論文の概要: A Crash Course on Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2103.04910v1
- Date: Mon, 8 Mar 2021 17:15:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 15:06:31.716863
- Title: A Crash Course on Reinforcement Learning
- Title(参考訳): 強化学習に関するクラッシュコース
- Authors: Farnaz Adib Yaghmaie, Lennart Ljung
- Abstract要約: 強化学習の新興分野は、戦略ゲーム、ロボティクスなど、さまざまな分野で印象的な結果をもたらしています。
このハンドアウトは、制御の観点からRLの簡単な紹介を与え、RL問題を解決するための3つの可能なアプローチについて議論することを目的とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emerging field of Reinforcement Learning (RL) has led to impressive
results in varied domains like strategy games, robotics, etc. This handout aims
to give a simple introduction to RL from control perspective and discuss three
possible approaches to solve an RL problem: Policy Gradient, Policy Iteration,
and Model-building. Dynamical systems might have discrete action-space like
cartpole where two possible actions are +1 and -1 or continuous action space
like linear Gaussian systems. Our discussion covers both cases.
- Abstract(参考訳): 強化学習(RL)の新興分野は、戦略ゲーム、ロボティクスなどのさまざまな分野で印象的な結果をもたらしました。
この手引きは、制御の観点からrlを簡単に紹介し、rl問題を解決するための3つの可能なアプローチ、すなわちポリシーグラデーション、ポリシーイテレーション、モデル構築について論じることを目的としている。
動的系はカートポールのような離散的な作用空間を持ち、2つの可能な作用は+1と-1または線形ガウス系のような連続的な作用空間である。
我々の議論は両方のケースをカバーしている。
関連論文リスト
- Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - The RL Perceptron: Generalisation Dynamics of Policy Learning in High
Dimensions [14.778024171498208]
強化学習アルゴリズムは、様々な領域において変形的であることが証明されている。
RLの多くの理論は、離散状態空間や最悪のケース解析に焦点を当てている。
本稿では,様々な学習プロトコルを捉えることができるRLの高次元解像モデルを提案する。
論文 参考訳(メタデータ) (2023-06-17T18:16:51Z) - Subequivariant Graph Reinforcement Learning in 3D Environments [34.875774768800966]
本稿では,3次元環境における変分グラフRL(Subequivariant Graph RL)という,形態に依存しないRLの新たなセットアップを提案する。
具体的には、まず3D空間でより実用的で挑戦的なベンチマークを新たに導入する。
拡張状態-作用空間上のポリシーを最適化するために,幾何対称性を注入することを提案する。
論文 参考訳(メタデータ) (2023-05-30T11:34:57Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
ドライビングSMARTSは、動的相互作用コンテキストにおける分散シフトに起因する問題に対処するために設計された定期的な競争である。
提案するコンペティションは,強化学習(RL)やオフライン学習など,方法論的に多様なソリューションをサポートする。
論文 参考訳(メタデータ) (2022-11-14T17:10:53Z) - A Game-Theoretic Perspective of Generalization in Reinforcement Learning [9.402272029807316]
強化学習(RL)の一般化は、RLアルゴリズムの実際の展開において重要である。
強化学習における一般化のためのゲーム理論フレームワークGiRLを提案する。
論文 参考訳(メタデータ) (2022-08-07T06:17:15Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
本稿では,SAPIEN ManiSkill Challenge 2021: No Interaction Trackにおいて,以下の2つのトラックを対象としたシステムの概要と比較分析を行った。
No Interactionは、事前に収集された実証軌道からの学習ポリシーのターゲットを追跡する。
このトラックでは,タスクを一連のサブタスクに分解することで,高品質なオブジェクト操作をトリガするHuristic Rule-based Method (HRM) を設計する。
各サブタスクに対して、ロボットアームに適用可能なアクションを予測するために、単純なルールベースの制御戦略が採用されている。
論文 参考訳(メタデータ) (2022-06-13T16:20:42Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRLはシーケンシャルな意思決定問題を解決するためのフレームワークである。
強化学習と潜在変数生成モデルの組み合わせを利用する。
最終方針訓練の性能に最も影響を与える生成モデルの特徴を実験的に決定する。
論文 参考訳(メタデータ) (2022-04-18T22:02:32Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Guided Dialog Policy Learning without Adversarial Learning in the Loop [103.20723982440788]
対話政策とともに報酬関数を学習するために,多くの逆学習法が提案されている。
敵の訓練を2つの段階に分割することを提案する。
まず,識別器を補助対話生成器で訓練し,得られた報酬モデルを共通RL法に組み込んで対話ポリシー学習を指導する。
論文 参考訳(メタデータ) (2020-04-07T11:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。