論文の概要: Vintix: Action Model via In-Context Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.19400v1
- Date: Fri, 31 Jan 2025 18:57:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 22:46:13.176104
- Title: Vintix: Action Model via In-Context Reinforcement Learning
- Title(参考訳): Vintix: 文脈強化学習による行動モデル
- Authors: Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexander Nikulin, Vladislav Kurenkov,
- Abstract要約: In-context reinforcement learning を通じて振る舞いを学習できる固定されたクロスドメインモデルを導入することで ICRL のスケールアップに向けた第一歩を提示する。
ICRLを促進するために設計されたフレームワークであるアルゴリズム蒸留は、多目的な作用モデルを構築するために、専門家蒸留に代わる魅力的な、競争力のある代替手段を提供することを示した。
- 参考スコア(独自算出の注目度): 72.65703565352769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-Context Reinforcement Learning (ICRL) represents a promising paradigm for developing generalist agents that learn at inference time through trial-and-error interactions, analogous to how large language models adapt contextually, but with a focus on reward maximization. However, the scalability of ICRL beyond toy tasks and single-domain settings remains an open challenge. In this work, we present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning. Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models. These findings highlight the potential of ICRL as a scalable approach for generalist decision-making systems. Code to be released at https://github.com/dunnolab/vintix
- Abstract(参考訳): In-Context Reinforcement Learning (ICRL)は、大規模言語モデルが文脈的にどのように適応するかに似た、試行錯誤相互作用を通じて推論時間で学習する汎用エージェントを開発するための、有望なパラダイムである。
しかし、おもちゃのタスクや単一ドメイン設定以外の ICRL のスケーラビリティは、まだオープンな課題である。
本研究では、テキスト内強化学習を通じて振る舞いを学習できる固定されたクロスドメインモデルを導入することにより、ICRLのスケールアップに向けた第一歩を提示する。
ICRLを促進するために設計されたフレームワークであるアルゴリズム蒸留は、多目的な作用モデルを構築するために、専門家蒸留に代わる魅力的な、競争力のある代替手段を提供することを示した。
これらの知見は、汎用的な意思決定システムのためのスケーラブルなアプローチとしてのICRLの可能性を示している。
https://github.com/dunnolab/vintixでリリースされるコード
関連論文リスト
- VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model [29.524164786422368]
最近、DeepSeek R1は、強化学習が大規模言語モデル(LLM)の推論能力を大幅に改善できることを示した。
視覚言語モデル(VLM)へのR1型強化学習の拡張について検討する。
VLM-R1 は,汎用視覚言語タスクにおける VLM の性能向上のために RL を利用した専用フレームワークである。
論文 参考訳(メタデータ) (2025-04-10T10:05:15Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - OmniRL: In-Context Reinforcement Learning by Large-Scale Meta-Training in Randomized Worlds [35.652208216209985]
我々は、数十万の多様なタスクをメタトレーニングした、高度に一般化可能なコンテキスト内強化学習モデルであるOmniRLを紹介した。
インコンテキスト学習(ICL)だけでは、勾配に基づく微調整を一切行わず、目に見えない体育館のタスクにうまく対応できることを初めて実証した。
論文 参考訳(メタデータ) (2025-02-05T03:59:13Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - LLMs Are In-Context Bandit Reinforcement Learners [30.192422586838997]
大規模言語モデル(LLMs)は、モデルコンテキストに注釈付きサンプルを追加することに依存する教師付き学習技術であるICL(In-context Learning)で優れている。
そこで本研究では、教師付きデータではなく、外部報酬からオンラインのコンテキスト内学習を行うICRL(In-context reinforcement Learning)について検討する。
論文 参考訳(メタデータ) (2024-10-07T17:45:00Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Learning by Doing: An Online Causal Reinforcement Learning Framework with Causal-Aware Policy [38.86867078596718]
我々は、図形因果モデルを用いて、状態の生成過程を明示的にモデル化することを検討する。
我々は、環境のアクティブな介入学習とRL相互作用プロセスに更新する因果構造を定式化する。
論文 参考訳(メタデータ) (2024-02-07T14:09:34Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Large Language Models can Implement Policy Iteration [18.424558160071808]
In-Context Policy Iterationは、基礎モデルを用いてReinforcement Learning(RL)を実行するアルゴリズムである。
ICPIは、専門家によるデモンストレーションやグラデーションなしでRLタスクを実行することを学ぶ。
ICPIは、RL環境との試行錯誤によってポリシーを導出するプロンプトの内容を反復的に更新する。
論文 参考訳(メタデータ) (2022-10-07T21:18:22Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
モデルベース強化学習(RL)のための修正目的を提案する。
相互情報に基づく状態空間モデルに,変分エンパワーメントにインスパイアされた用語を統合する。
本研究は,視覚に基づくロボット制御作業における自然な映像背景を用いたアプローチの評価である。
論文 参考訳(メタデータ) (2022-04-18T23:09:23Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
文脈強化学習(cRL)は、このような変化を原則的にモデル化するためのフレームワークを提供する。
我々は,cRLが有意義なベンチマークや一般化タスクに関する構造化推論を通じて,RLのゼロショット一般化の改善にどのように貢献するかを示す。
論文 参考訳(メタデータ) (2022-02-09T15:01:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。