Deep reinforcement learning models the emergent dynamics of human
cooperation
- URL: http://arxiv.org/abs/2103.04982v1
- Date: Mon, 8 Mar 2021 18:58:40 GMT
- Title: Deep reinforcement learning models the emergent dynamics of human
cooperation
- Authors: Kevin R. McKee, Edward Hughes, Tina O. Zhu, Martin J. Chadwick,
Raphael Koster, Antonio Garcia Castaneda, Charlie Beattie, Thore Graepel,
Matt Botvinick, Joel Z. Leibo
- Abstract summary: Experimental research has been unable to shed light on how social cognitive mechanisms contribute to the where and when of collective action.
We leverage multi-agent deep reinforcement learning to model how a social-cognitive mechanism--specifically, the intrinsic motivation to achieve a good reputation--steers group behavior.
- Score: 13.425401489679583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collective action demands that individuals efficiently coordinate how much,
where, and when to cooperate. Laboratory experiments have extensively explored
the first part of this process, demonstrating that a variety of
social-cognitive mechanisms influence how much individuals choose to invest in
group efforts. However, experimental research has been unable to shed light on
how social cognitive mechanisms contribute to the where and when of collective
action. We leverage multi-agent deep reinforcement learning to model how a
social-cognitive mechanism--specifically, the intrinsic motivation to achieve a
good reputation--steers group behavior toward specific spatial and temporal
strategies for collective action in a social dilemma. We also collect
behavioral data from groups of human participants challenged with the same
dilemma. The model accurately predicts spatial and temporal patterns of group
behavior: in this public goods dilemma, the intrinsic motivation for reputation
catalyzes the development of a non-territorial, turn-taking strategy to
coordinate collective action.
Related papers
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Enhancing Cooperation through Selective Interaction and Long-term Experiences in Multi-Agent Reinforcement Learning [10.932974027102619]
This study introduces a computational framework based on multi-agent reinforcement learning in the spatial Prisoner's Dilemma game.
By modelling each agent using two distinct Q-networks, we disentangle the coevolutionary dynamics between cooperation and interaction.
arXiv Detail & Related papers (2024-05-04T12:42:55Z) - Social Motion Prediction with Cognitive Hierarchies [19.71780279070757]
We introduce a new benchmark, a novel formulation, and a cognition-inspired framework.
We present Wusi, a 3D multi-person motion dataset under the context of team sports.
We develop a cognitive hierarchy framework to predict strategic human social interactions.
arXiv Detail & Related papers (2023-11-08T14:51:17Z) - Discovering Individual Rewards in Collective Behavior through Inverse
Multi-Agent Reinforcement Learning [3.4437947384641032]
We introduce an off-policy inverse multi-agent reinforcement learning algorithm (IMARL)
By leveraging demonstrations, our algorithm automatically uncovers the reward function and learns an effective policy for the agents.
The proposed IMARL algorithm is a significant step towards understanding collective dynamics from the perspective of its constituents.
arXiv Detail & Related papers (2023-05-17T20:07:30Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
This study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus.
We compare the results of our deep learning approach to experiments and to the results of a state-of-the-art analytical model.
We demonstrate that machine learning models social interactions can directly compete with their analytical counterparts in subtle experimental observables.
arXiv Detail & Related papers (2023-02-14T05:25:03Z) - Flexible social inference facilitates targeted social learning when
rewards are not observable [58.762004496858836]
Groups coordinate more effectively when individuals are able to learn from others' successes.
We suggest that social inference capacities may help bridge this gap, allowing individuals to update their beliefs about others' underlying knowledge and success from observable trajectories of behavior.
arXiv Detail & Related papers (2022-12-01T21:04:03Z) - Development of collective behavior in newborn artificial agents [0.0]
We use deep reinforcement learning and curiosity-driven learning to build newborn artificial agents that develop collective behavior.
Our agents learn collective behavior without external rewards, using only intrinsic motivation (curiosity) to drive learning.
This work bridges the divide between high-dimensional sensory inputs and collective action, resulting in a pixels-to-actions model of collective animal behavior.
arXiv Detail & Related papers (2021-11-06T03:46:31Z) - Improved cooperation by balancing exploration and exploitation in
intertemporal social dilemma tasks [2.541277269153809]
We propose a new learning strategy for achieving coordination by incorporating a learning rate that can balance exploration and exploitation.
We show that agents that use the simple strategy improve a relatively collective return in a decision task called the intertemporal social dilemma.
We also explore the effects of the diversity of learning rates on the population of reinforcement learning agents and show that agents trained in heterogeneous populations develop particularly coordinated policies.
arXiv Detail & Related papers (2021-10-19T08:40:56Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
We study the role of intrinsic motivation as an exploration bias for reinforcement learning in sparse-reward synergistic tasks.
Our key idea is that a good guiding principle for intrinsic motivation in synergistic tasks is to take actions which affect the world in ways that would not be achieved if the agents were acting on their own.
arXiv Detail & Related papers (2020-02-12T19:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.