Social Motion Prediction with Cognitive Hierarchies
- URL: http://arxiv.org/abs/2311.04726v1
- Date: Wed, 8 Nov 2023 14:51:17 GMT
- Title: Social Motion Prediction with Cognitive Hierarchies
- Authors: Wentao Zhu, Jason Qin, Yuke Lou, Hang Ye, Xiaoxuan Ma, Hai Ci, Yizhou
Wang
- Abstract summary: We introduce a new benchmark, a novel formulation, and a cognition-inspired framework.
We present Wusi, a 3D multi-person motion dataset under the context of team sports.
We develop a cognitive hierarchy framework to predict strategic human social interactions.
- Score: 19.71780279070757
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Humans exhibit a remarkable capacity for anticipating the actions of others
and planning their own actions accordingly. In this study, we strive to
replicate this ability by addressing the social motion prediction problem. We
introduce a new benchmark, a novel formulation, and a cognition-inspired
framework. We present Wusi, a 3D multi-person motion dataset under the context
of team sports, which features intense and strategic human interactions and
diverse pose distributions. By reformulating the problem from a multi-agent
reinforcement learning perspective, we incorporate behavioral cloning and
generative adversarial imitation learning to boost learning efficiency and
generalization. Furthermore, we take into account the cognitive aspects of the
human social action planning process and develop a cognitive hierarchy
framework to predict strategic human social interactions. We conduct
comprehensive experiments to validate the effectiveness of our proposed dataset
and approach. Code and data are available at
https://walter0807.github.io/Social-CH/.
Related papers
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction [19.075215661355486]
We build a new anglebased trainable social interaction representation, named SocialCircle, for continuously reflecting the context of social interactions.
We validate the effect of the proposed SocialCircle by training it along with several newly released trajectory prediction models.
Experiments show that the SocialCircle not only quantitatively improves the prediction performance, but also qualitatively helps better simulate social interactions.
arXiv Detail & Related papers (2023-10-09T02:59:21Z) - Flexible social inference facilitates targeted social learning when
rewards are not observable [58.762004496858836]
Groups coordinate more effectively when individuals are able to learn from others' successes.
We suggest that social inference capacities may help bridge this gap, allowing individuals to update their beliefs about others' underlying knowledge and success from observable trajectories of behavior.
arXiv Detail & Related papers (2022-12-01T21:04:03Z) - BOSS: A Benchmark for Human Belief Prediction in Object-context
Scenarios [14.23697277904244]
This paper uses the combined knowledge of Theory of Mind (ToM) and Object-Context Relations to investigate methods for enhancing collaboration between humans and autonomous systems.
We propose a novel and challenging multimodal video dataset for assessing the capability of artificial intelligence (AI) systems in predicting human belief states in an object-context scenario.
arXiv Detail & Related papers (2022-06-21T18:29:17Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Social Neuro AI: Social Interaction as the "dark matter" of AI [0.0]
We argue that empirical results from social psychology and social neuroscience along with the framework of dynamics can be of inspiration to the development of more intelligent artificial agents.
arXiv Detail & Related papers (2021-12-31T13:41:53Z) - Deep reinforcement learning models the emergent dynamics of human
cooperation [13.425401489679583]
Experimental research has been unable to shed light on how social cognitive mechanisms contribute to the where and when of collective action.
We leverage multi-agent deep reinforcement learning to model how a social-cognitive mechanism--specifically, the intrinsic motivation to achieve a good reputation--steers group behavior.
arXiv Detail & Related papers (2021-03-08T18:58:40Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - Human-in-the-Loop Methods for Data-Driven and Reinforcement Learning
Systems [0.8223798883838329]
This research investigates how to integrate human interaction modalities to the reinforcement learning loop.
Results show that the reward signal that is learned based upon human interaction accelerates the rate of learning of reinforcement learning algorithms.
arXiv Detail & Related papers (2020-08-30T17:28:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.