Offboard 3D Object Detection from Point Cloud Sequences
- URL: http://arxiv.org/abs/2103.05073v1
- Date: Mon, 8 Mar 2021 21:02:37 GMT
- Title: Offboard 3D Object Detection from Point Cloud Sequences
- Authors: Charles R. Qi, Yin Zhou, Mahyar Najibi, Pei Sun, Khoa Vo, Boyang Deng,
Dragomir Anguelov
- Abstract summary: Existing 3D object detectors fail to satisfy the high-quality requirement for offboard uses due to the limited input and speed constraints.
We propose a novel offboard 3D object detection pipeline using point cloud sequence data.
Our pipeline named 3D Auto Labeling shows significant gains compared to the state-of-the-art onboard detectors and our offboard baselines.
- Score: 25.13305723746408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While current 3D object recognition research mostly focuses on the real-time,
onboard scenario, there are many offboard use cases of perception that are
largely under-explored, such as using machines to automatically generate
high-quality 3D labels. Existing 3D object detectors fail to satisfy the
high-quality requirement for offboard uses due to the limited input and speed
constraints. In this paper, we propose a novel offboard 3D object detection
pipeline using point cloud sequence data. Observing that different frames
capture complementary views of objects, we design the offboard detector to make
use of the temporal points through both multi-frame object detection and novel
object-centric refinement models. Evaluated on the Waymo Open Dataset, our
pipeline named 3D Auto Labeling shows significant gains compared to the
state-of-the-art onboard detectors and our offboard baselines. Its performance
is even on par with human labels verified through a human label study. Further
experiments demonstrate the application of auto labels for semi-supervised
learning and provide extensive analysis to validate various design choices.
Related papers
- PatchContrast: Self-Supervised Pre-training for 3D Object Detection [14.603858163158625]
We introduce PatchContrast, a novel self-supervised point cloud pre-training framework for 3D object detection.
We show that our method outperforms existing state-of-the-art models on three commonly-used 3D detection datasets.
arXiv Detail & Related papers (2023-08-14T07:45:54Z) - DetZero: Rethinking Offboard 3D Object Detection with Long-term
Sequential Point Clouds [55.755450273390004]
Existing offboard 3D detectors always follow a modular pipeline design to take advantage of unlimited sequential point clouds.
We have found that the full potential of offboard 3D detectors is not explored mainly due to two reasons: (1) the onboard multi-object tracker cannot generate sufficient complete object trajectories, and (2) the motion state of objects poses an inevitable challenge for the object-centric refining stage.
To tackle these problems, we propose a novel paradigm of offboard 3D object detection, named DetZero.
arXiv Detail & Related papers (2023-06-09T16:42:00Z) - View-to-Label: Multi-View Consistency for Self-Supervised 3D Object
Detection [46.077668660248534]
We propose a novel approach to self-supervise 3D object detection purely from RGB sequences alone.
Our experiments on KITTI 3D dataset demonstrate performance on par with state-of-the-art self-supervised methods.
arXiv Detail & Related papers (2023-05-29T09:30:39Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3D object tracking is a critical task in autonomous driving systems.
In this paper we investigate the use of triplet embeddings in combination with motion representations for 3D object tracking.
arXiv Detail & Related papers (2022-10-28T15:23:50Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - Label-Guided Auxiliary Training Improves 3D Object Detector [32.96310946612949]
We propose a Label-Guided auxiliary training method for 3D object detection (LG3D)
Our proposed LG3D improves VoteNet by 2.5% and 3.1% mAP on the SUN RGB-D and ScanNetV2 datasets.
arXiv Detail & Related papers (2022-07-24T14:22:21Z) - 3D Spatial Recognition without Spatially Labeled 3D [127.6254240158249]
We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition.
We show that WyPR can detect and segment objects in point cloud data without access to any spatial labels at training time.
arXiv Detail & Related papers (2021-05-13T17:58:07Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View [117.44028458220427]
On-board 3D object detection in autonomous vehicles often relies on geometry information captured by LiDAR devices.
We present a fully end-to-end 3D object detection framework that can infer oriented 3D boxes solely from BEV images.
arXiv Detail & Related papers (2020-03-09T15:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.