論文の概要: A Scavenger Hunt for Service Robots
- arxiv url: http://arxiv.org/abs/2103.05225v2
- Date: Thu, 11 Mar 2021 05:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 12:22:57.084571
- Title: A Scavenger Hunt for Service Robots
- Title(参考訳): サービスロボットのためのスカベンジャーハント
- Authors: Harel Yedidsion, Jennifer Suriadinata, Zifan Xu, Stefan Debruyn, Peter
Stone
- Abstract要約: 本稿では,このスキルをScavenger Hunt(SH)ゲームとしてモデル化する。
目的は、発見される可能性のある確率分布を考えると、できるだけ迅速にオブジェクトのセットを見つけることです。
この問題では、目的は、発見される可能性のある確率分布を考えると、できるだけ迅速にオブジェクトの集合を見つけることである。
- 参考スコア(独自算出の注目度): 33.47876022070874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creating robots that can perform general-purpose service tasks in a
human-populated environment has been a longstanding grand challenge for AI and
Robotics research. One particularly valuable skill that is relevant to a wide
variety of tasks is the ability to locate and retrieve objects upon request.
This paper models this skill as a Scavenger Hunt (SH) game, which we formulate
as a variation of the NP-hard stochastic traveling purchaser problem. In this
problem, the goal is to find a set of objects as quickly as possible, given
probability distributions of where they may be found. We investigate the
performance of several solution algorithms for the SH problem, both in
simulation and on a real mobile robot. We use Reinforcement Learning (RL) to
train an agent to plan a minimal cost path, and show that the RL agent can
outperform a range of heuristic algorithms, achieving near optimal performance.
In order to stimulate research on this problem, we introduce a publicly
available software stack and associated website that enable users to upload
scavenger hunts which robots can download, perform, and learn from to
continually improve their performance on future hunts.
- Abstract(参考訳): 人間人口の多い環境で汎用的なサービスタスクをこなせるロボットを作ることは、AIとロボティクス研究にとって長年大きな課題だった。
さまざまなタスクに関連する特に貴重なスキルの1つは、リクエストに応じてオブジェクトを見つけて取得する機能です。
本稿では,このスキルをScavenger Hunt (SH)ゲームとしてモデル化し,NP型確率的旅行購入問題の変種として定式化する。
この問題では、目的は、発見される可能性のある確率分布を考えると、できるだけ迅速にオブジェクトの集合を見つけることである。
シミュレーションと実際の移動ロボットにおけるSH問題に対するいくつかの解法アルゴリズムの性能について検討する。
Reinforcement Learning(RL)を使用してエージェントをトレーニングして最小限のコストパスを計画し、RLエージェントがさまざまなヒューリスティックアルゴリズムを上回り、最適なパフォーマンスを達成できることを示します。
そこで,本研究では,ロボットがダウンロードし,実行し,そこから学び,将来的なハントにおけるパフォーマンスを継続的に向上させることのできる,スキャベンジャーハントをアップロード可能な,公開可能なソフトウェアスタックと関連Webサイトを紹介した。
関連論文リスト
- Human-Robot Collaborative Minimum Time Search through Sub-priors in Ant Colony Optimization [3.04478108783992]
本稿では,最小時間探索(MTS)課題を解決するため,ACOメタヒューリスティックの拡張を提案する。
提案したモデルは2つの主要ブロックから構成される。第1のモデルは畳み込みニューラルネットワーク(CNN)で、オブジェクトがセグメント化された画像からどこにあるかという事前確率を提供する。
2つ目は、サブプライアのMTS-ACOアルゴリズム(SP-MTS-ACO)である。
論文 参考訳(メタデータ) (2024-10-01T08:57:28Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Automatic Environment Shaping is the Next Frontier in RL [20.894840942319323]
多くのロボット学者は、夕方にタスクを持ったロボットを提示し、翌朝にそのタスクを解くことができるロボットを見つけることを夢見ている。
実際の強化学習は、挑戦的なロボティクスのタスクにおいて素晴らしいパフォーマンスを達成したが、そのタスクをRLに相応しい方法でセットアップするには、相当な人的努力が必要である。
政策最適化やその他のアイデアのアルゴリズムによる改善は、トレーニング環境を形作る際の主要なボトルネックを解決するために導かれるべきだ、という私たちの立場です。
論文 参考訳(メタデータ) (2024-07-23T05:22:29Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Discovering Unsupervised Behaviours from Full-State Trajectories [1.827510863075184]
本稿では,自律的に行動特性を見出す品質多様性アルゴリズムとして,自律型ロボットの能力を実現する手法を提案する。
本手法は,ロボットが実状態の軌道から自律的にその能力を見いださなければならないシミュレーションロボット環境において評価する。
より具体的には、分析されたアプローチは、ロボットを多様な位置に移動させるポリシーを自律的に見つけるだけでなく、脚を多様な方法で活用し、ハーフロールも行う。
論文 参考訳(メタデータ) (2022-11-22T16:57:52Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Robotic Brain Storm Optimization: A Multi-target Collaborative Searching
Paradigm for Swarm Robotics [24.38312890501329]
本稿では,ロボットBSOと呼ばれる群ロボットのためのBSOベースの協調探索フレームワークを提案する。
提案手法はBSOの誘導探索特性をシミュレートし,Swarm Robotics のマルチターゲット探索問題に優れた可能性を持つ。
論文 参考訳(メタデータ) (2021-05-27T13:05:48Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
BEE(Batch Exploration with Examples)は、重要状態の画像の少ない数の人間がガイドする状態空間の関連領域を探索する。
BEEは、シミュレーションと本物のフランカロボットの両方で、視覚ベースの操作に挑戦することができる。
論文 参考訳(メタデータ) (2020-10-22T17:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。