論文の概要: Discovering Unsupervised Behaviours from Full-State Trajectories
- arxiv url: http://arxiv.org/abs/2211.15451v1
- Date: Tue, 22 Nov 2022 16:57:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 13:51:19.907181
- Title: Discovering Unsupervised Behaviours from Full-State Trajectories
- Title(参考訳): 完全状態軌道からの教師なし行動の発見
- Authors: Luca Grillotti, Antoine Cully
- Abstract要約: 本稿では,自律的に行動特性を見出す品質多様性アルゴリズムとして,自律型ロボットの能力を実現する手法を提案する。
本手法は,ロボットが実状態の軌道から自律的にその能力を見いださなければならないシミュレーションロボット環境において評価する。
より具体的には、分析されたアプローチは、ロボットを多様な位置に移動させるポリシーを自律的に見つけるだけでなく、脚を多様な方法で活用し、ハーフロールも行う。
- 参考スコア(独自算出の注目度): 1.827510863075184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving open-ended learning capabilities is a promising approach to enable
robots to face the unbounded complexity of the real-world. Among existing
methods, the ability of Quality-Diversity algorithms to generate large
collections of diverse and high-performing skills is instrumental in this
context. However, most of those algorithms rely on a hand-coded behavioural
descriptor to characterise the diversity, hence requiring prior knowledge about
the considered tasks. In this work, we propose an additional analysis of
Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that
autonomously finds behavioural characterisations. We evaluate this approach on
a simulated robotic environment, where the robot has to autonomously discover
its abilities from its full-state trajectories. All algorithms were applied to
three tasks: navigation, moving forward with a high velocity, and performing
half-rolls. The experimental results show that the algorithm under study
discovers autonomously collections of solutions that are diverse with respect
to all tasks. More specifically, the analysed approach autonomously finds
policies that make the robot move to diverse positions, but also utilise its
legs in diverse ways, and even perform half-rolls.
- Abstract(参考訳): オープンな学習能力の向上は、ロボットが現実世界の無限の複雑さに直面するための有望なアプローチである。
既存の手法の中で,多種多様かつ高性能なスキルを大量に集める品質多様性アルゴリズムは,この文脈において有効である。
しかし、これらのアルゴリズムのほとんどは、多様性を特徴付けるためにハンドコードされた振る舞い記述子に依存しているため、考慮されたタスクに関する事前の知識を必要とする。
そこで本研究では,自律的なロボットの能力を実現するための新たな分析手法を提案する。
本手法は,ロボットが実状態の軌道から自律的にその能力を見いださなければならないシミュレーションロボット環境において評価する。
すべてのアルゴリズムはナビゲーション、高速で前進、ハーフロールの3つのタスクに適用された。
実験の結果,全てのタスクに対して多様な解を自律的に収集するアルゴリズムが発見された。
より具体的には、分析されたアプローチは、ロボットを多様な位置に移動させるポリシーを自律的に見つけるだけでなく、脚を多様な方法で活用する。
関連論文リスト
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - Interactive Multi-Robot Flocking with Gesture Responsiveness and Musical Accompaniment [0.7659052547635159]
この研究は魅力的なマルチロボットタスクを示し、その主な目的は熱意と関心を喚起することである。
このタスクでは、人間と一緒に動き、ダイナミックで表現力のあるロボット群に参加することが目標である。
この目的に向けて、研究チームはロボットの動きとジェスチャーや音といった対話モードを関連づけるアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-03-30T18:16:28Z) - Practice Makes Perfect: Planning to Learn Skill Parameter Policies [34.51008914846429]
本研究では,将来的なタスクの成功を最大化するために,どのスキルを実践するかという,アクティブな学習問題に焦点をあてる。
本稿では,ロボットが各スキルの能力を推定し,能力の外挿を行い,能力認識計画を通じてタスク分布のスキルを定めておくことを提案する。
このアプローチは、ロボットが環境をリセットせずに繰り返し計画し、実践し、学習する完全に自律的なシステム内で実装される。
論文 参考訳(メタデータ) (2024-02-22T23:58:26Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid
Hierarchical Learning for Solving Complex Sequential Tasks [70.69063219750952]
ロボットマニピュレーションネットワーク(ROMAN)のハイブリッド階層型学習フレームワークを提案する。
ROMANは、行動クローニング、模倣学習、強化学習を統合することで、タスクの汎用性と堅牢な障害回復を実現する。
実験結果から,これらの専門的な操作専門家の組織化と活性化により,ROMANは高度な操作タスクの長いシーケンスを達成するための適切なシーケンシャルなアクティベーションを生成することがわかった。
論文 参考訳(メタデータ) (2023-06-30T20:35:22Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Relevance-guided Unsupervised Discovery of Abilities with
Quality-Diversity Algorithms [1.827510863075184]
本稿では,その課題に適した行動特性を自律的に発見する品質多様性アルゴリズムであるRelevance-guided Unsupervised Discovery of Abilitiesを紹介する。
我々は、ロボットが完全な感覚データに基づいて自律的にその能力を発見しなければならない、シミュレーションされたロボット環境に対するアプローチを評価する。
論文 参考訳(メタデータ) (2022-04-21T00:29:38Z) - Divide & Conquer Imitation Learning [75.31752559017978]
模倣学習は学習プロセスをブートストラップするための強力なアプローチである。
本稿では,専門的軌道の状態から複雑なロボットタスクを模倣する新しいアルゴリズムを提案する。
提案手法は,非ホロノミックナビゲーションタスクを模倣し,非常に高いサンプル効率で複雑なロボット操作タスクにスケールすることを示す。
論文 参考訳(メタデータ) (2022-04-15T09:56:50Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Unsupervised Behaviour Discovery with Quality-Diversity Optimisation [1.0152838128195467]
品質多様性アルゴリズム(Quality-Diversity algorithm)は、与えられた問題に対する多様な高性能なソリューションの集合を見つけるために設計された進化的アルゴリズムのクラスを指す。
ロボット工学において、そのようなアルゴリズムはロボットの動作のほとんどをカバーするコントローラーの集合を生成するのに使用できる。
本稿では,自律型ロボットの能力を実現するアルゴリズムについて紹介する。
論文 参考訳(メタデータ) (2021-06-10T10:40:18Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。