論文の概要: Multimodal fusion using sparse CCA for breast cancer survival prediction
- arxiv url: http://arxiv.org/abs/2103.05432v1
- Date: Tue, 9 Mar 2021 14:23:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-10 14:42:44.550512
- Title: Multimodal fusion using sparse CCA for breast cancer survival prediction
- Title(参考訳): スパースCCAを用いた乳癌生存予測のためのマルチモーダル融合
- Authors: Vaishnavi Subramanian, Tanveer Syeda-Mahmood, Minh N. Do
- Abstract要約: 本稿では,モダリティ内およびモダリティ間相関を考慮した正準相関解析による特徴埋め込みモジュールを提案する。
シミュレーションおよび実データを用いた実験は,提案モジュールがよく相関した多次元埋め込みを学習できることを示す。
- 参考スコア(独自算出の注目度): 18.586974977393258
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Effective understanding of a disease such as cancer requires fusing multiple
sources of information captured across physical scales by multimodal data. In
this work, we propose a novel feature embedding module that derives from
canonical correlation analyses to account for intra-modality and inter-modality
correlations. Experiments on simulated and real data demonstrate how our
proposed module can learn well-correlated multi-dimensional embeddings. These
embeddings perform competitively on one-year survival classification of
TCGA-BRCA breast cancer patients, yielding average F1 scores up to 58.69% under
5-fold cross-validation.
- Abstract(参考訳): がんなどの疾患を効果的に理解するには、マルチモーダルデータによって物理的スケールで取得された複数の情報ソースを融合する必要がある。
本研究では,モダリティ内およびモダリティ間相関を考慮に入れた標準相関解析から導出した新しい特徴埋め込みモジュールを提案する。
シミュレーションおよび実データを用いた実験は,提案モジュールがよく相関した多次元埋め込みを学習できることを示す。
これらの埋め込みは、TCGA-BRCA乳がん患者の1年間の生存率の分類において競合的に働き、平均F1スコアは5倍のクロスバリデーションで58.69%に達する。
関連論文リスト
- Survival Prediction in Lung Cancer through Multi-Modal Representation Learning [9.403446155541346]
本稿では,CTとPETの包括的情報と関連するゲノムデータを用いた生存予測手法を提案する。
我々は,マルチモーダル画像データと遺伝的情報を統合することにより,生存率の予測モデルを構築することを目的とする。
論文 参考訳(メタデータ) (2024-09-30T10:42:20Z) - M2EF-NNs: Multimodal Multi-instance Evidence Fusion Neural Networks for Cancer Survival Prediction [24.323961146023358]
本稿では,M2EF-NNと呼ばれるニューラルネットワークモデルを提案する。
画像中のグローバル情報をキャプチャするために、事前訓練された視覚変換器(ViT)モデルを用いる。
Dempster-Shaferエビデンス理論(DST)を癌生存予測に適用した最初の例である。
論文 参考訳(メタデータ) (2024-08-08T02:31:04Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
CT画像に基づくリンパ節転移診断のためのマルチモーダルな不均一グラフに基づく条件付き特徴誘導拡散モデルを提案する。
本稿では, 悪性腫瘍とリンパ節像の関連性, 優先性を明らかにすることを目的として, マスク付き関係表現学習戦略を提案する。
論文 参考訳(メタデータ) (2024-05-15T17:52:00Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Cross-modality Attention-based Multimodal Fusion for Non-small Cell Lung
Cancer (NSCLC) Patient Survival Prediction [0.6476298550949928]
非小細胞肺癌(NSCLC)における患者生存予測のためのモダリティ特異的知識の統合を目的としたマルチモーダル核融合パイプラインを提案する。
組織画像データとRNA-seqデータのみを用いてc-index0.5772と0.5885を達成した単一モダリティと比較して, 提案した融合法はc-index0.6587を達成した。
論文 参考訳(メタデータ) (2023-08-18T21:42:52Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
大腸癌生存予測に病理学とゲノム学的知見を統合したマルチモーダルトランスフォーマー(PathOmics)を提案する。
ギガピクセル全スライド画像における組織ミクロ環境間の内在的相互作用を捉えるための教師なし事前訓練を強調した。
我々は,TCGA大腸癌と直腸癌コホートの両方に対するアプローチを評価し,提案手法は競争力があり,最先端の研究より優れていることを示す。
論文 参考訳(メタデータ) (2023-07-22T00:59:26Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Federated Deep AUC Maximization for Heterogeneous Data with a Constant
Communication Complexity [77.78624443410216]
異種胸部データ検出のための改良型FDAMアルゴリズムを提案する。
本研究は,提案アルゴリズムの通信が機械数に強く依存し,精度レベルにも強く依存していることを示す。
FDAMアルゴリズムのベンチマークデータセットと、異なる組織の医療用胸部X線画像に対する効果を実験により実証した。
論文 参考訳(メタデータ) (2021-02-09T04:05:19Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。