Asymptotically Consistent Measures of General Quantum Resources:
Discord, Non-Markovianity, and Non-Gaussianity
- URL: http://arxiv.org/abs/2103.05665v4
- Date: Wed, 20 Sep 2023 19:18:54 GMT
- Title: Asymptotically Consistent Measures of General Quantum Resources:
Discord, Non-Markovianity, and Non-Gaussianity
- Authors: Kohdai Kuroiwa and Hayata Yamasaki
- Abstract summary: In this paper, we establish an alternative axiom, of resource measures, which quantify resources without contradicting the rates of the resource transformation.
Results show that consistent resource measures are widely applicable to the quantitative analysis of various quantum-dimensional properties.
- Score: 1.90365714903665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum resource theories provide a unified framework to quantitatively
analyze inherent quantum properties as resources for quantum information
processing. So as to investigate the best way for quantifying resources,
desirable axioms for resource quantification have been extensively studied
through axiomatic approaches. However, a conventional way of resource
quantification by resource measures with such desired axioms may contradict
rates of asymptotic transformation between resourceful quantum states due to an
approximation in the transformation. In this paper, we establish an alternative
axiom, asymptotic consistency of resource measures, and we investigate
asymptotically consistent resource measures, which quantify resources without
contradicting the rates of the asymptotic resource transformation. We prove
that relative entropic measures are consistent with the rates for a broad class
of resources, i.e., all convex finite-dimensional resources, e.g.,
entanglement, coherence, and magic, and even some nonconvex or
infinite-dimensional resources such as quantum discord, non-Markovianity, and
non-Gaussianity. These results show that consistent resource measures are
widely applicable to the quantitative analysis of various inherent
quantum-mechanical properties.
Related papers
- Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - Robustness- and weight-based resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories [1.3124513975412255]
characterizations of robustness- and weight-based measures in general QRTs without convexity restriction.
We establish the usefulness of robustness-based and weight-based techniques beyond the conventional scope of convex QRTs.
arXiv Detail & Related papers (2023-10-13T14:52:49Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - On a gap in the proof of the generalised quantum Stein's lemma and its
consequences for the reversibility of quantum resources [51.243733928201024]
We show that the proof of the generalised quantum Stein's lemma is not correct due to a gap in the argument leading to Lemma III.9.
This puts into question a number of established results in the literature, in particular the reversibility of quantum entanglement.
arXiv Detail & Related papers (2022-05-05T17:46:05Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Shannon theory beyond quantum: information content of a source [68.8204255655161]
We extend the definition of information content to operational probabilistic theories.
We prove relevant properties as the subadditivity, and the relation between purity and information content of a state.
arXiv Detail & Related papers (2021-12-23T16:36:06Z) - One-Shot Yield-Cost Relations in General Quantum Resource Theories [5.37133760455631]
We establish a relation between the one-shot distillable resource yield and dilution cost.
We show that our techniques provide strong converse bounds relating the distillable resource and resource dilution cost in the regime.
arXiv Detail & Related papers (2021-10-05T17:59:30Z) - Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [58.720142291102135]
We define a resource measure for magic, the sought-after property in most fault-tolerant quantum computers.
Our formulation is based on bosonic codes, well-studied tools in continuous-variable quantum computation.
arXiv Detail & Related papers (2021-09-27T12:56:01Z) - One-shot dynamical resource theory [16.046979670252814]
We consider tasks of one-shot resource distillation and dilution with a single copy of the resource.
For any target of unitary channel or pure state preparation channel, we establish a universal strategy to determine upper and lower bounds on rates that convert between any given resource and the target.
Our results are applicable to general dynamical resource theories with potential applications in quantum communication, fault-tolerant quantum computing, and quantum thermodynamics.
arXiv Detail & Related papers (2020-12-04T18:57:42Z) - Framework for resource quantification in infinite-dimensional general
probabilistic theories [6.308539010172309]
Resource theories provide a general framework for the characterization of properties of physical systems in quantum mechanics and beyond.
We introduce methods for the quantification of resources in general probabilistic theories (GPTs)
We show that a given resource state enables in channel discrimination tasks over all resourceless states.
We demonstrate applications of the robustness to several resources of physical relevance: optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence.
arXiv Detail & Related papers (2020-09-23T18:00:20Z) - General Quantum Resource Theories: Distillation, Formation and
Consistent Resource Measures [3.8073142980733]
Quantum resource theories (QRTs) provide a unified theoretical framework for understanding inherent quantum-mechanical properties that serve as resources in quantum information processing.
But resources motivated by physics may possess intractable mathematical structure to analyze, such as non-uniqueness of maximally resourceful states, lack of convexity, and infinite dimension.
We investigate state conversion and resource measures in general QRTs under minimal assumptions to figure out universal properties of physically motivated quantum resources.
arXiv Detail & Related papers (2020-02-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.