論文の概要: Learning to Estimate Kernel Scale and Orientation of Defocus Blur with
Asymmetric Coded Aperture
- arxiv url: http://arxiv.org/abs/2103.05843v1
- Date: Wed, 10 Mar 2021 03:12:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 05:59:57.600526
- Title: Learning to Estimate Kernel Scale and Orientation of Defocus Blur with
Asymmetric Coded Aperture
- Title(参考訳): 非対称符号開口を用いたデフォーカスブラーのカーネルスケールと向きの推定
- Authors: Jisheng Li, Qi Dai, Jiangtao Wen
- Abstract要約: 一貫したインフォーカス入力画像は、動的環境を知覚する機械ビジョンシステムにとって不可欠な前提条件です。
デフォーカスブラーは視覚システムの性能を著しく低下させる。
デフォーカスボケのカーネルスケールと向きを推定し、レンズフォーカスを素早く調整するディープラーニングベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.472377706422474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consistent in-focus input imagery is an essential precondition for machine
vision systems to perceive the dynamic environment. A defocus blur severely
degrades the performance of vision systems. To tackle this problem, we propose
a deep-learning-based framework estimating the kernel scale and orientation of
the defocus blur to adjust lens focus rapidly. Our pipeline utilizes 3D ConvNet
for a variable number of input hypotheses to select the optimal slice from the
input stack. We use random shuffle and Gumbel-softmax to improve network
performance. We also propose to generate synthetic defocused images with
various asymmetric coded apertures to facilitate training. Experiments are
conducted to demonstrate the effectiveness of our framework.
- Abstract(参考訳): 一貫したインフォーカス入力画像は、動的環境を知覚する機械ビジョンシステムにとって不可欠な前提条件です。
デフォーカスブラーは視覚システムの性能を著しく低下させる。
この問題に対処するために,デフォーカスブラーのカーネルスケールと向きを推定し,レンズ焦点を迅速に調整するディープラーニングベースのフレームワークを提案する。
パイプラインは,入力スタックから最適スライスを選択するために,可変数の入力仮説に対して3D ConvNetを利用する。
ランダムシャッフルとGumbel-softmaxを使用してネットワークパフォーマンスを改善します。
また, 様々な非対称符号化開口を有する合成デフォーカス画像を生成し, 訓練を容易にすることを提案する。
本フレームワークの有効性を実証するために実験を行った。
関連論文リスト
- Reblurring-Guided Single Image Defocus Deblurring: A Learning Framework with Misaligned Training Pairs [65.25002116216771]
本稿では,単一画像デフォーカス・デブロアリングのためのリブロアリング誘導学習フレームワークを提案する。
我々のリブラーリングモジュールは、デブラーレッド画像とリブラーレッド画像と入力ぼかし画像との空間的整合性を保証する。
我々は,典型的な誤認識を伴わない単一画像デフォーカスのための新しいデータセットを収集した。
論文 参考訳(メタデータ) (2024-09-26T12:37:50Z) - Aberration-Aware Depth-from-Focus [20.956132508261664]
焦点スタックにおける最良焦点フレームの決定に影響を及ぼすオフ軸収差による領域ギャップについて検討する。
次に、収差認識トレーニング(AAT)を通じて、この領域ギャップをブリッジすることを検討する。
我々のアプローチは、異なる位置でレンズ収差をモデル化し、フォーカス距離をモデル化する軽量ネットワークで、従来のネットワークトレーニングパイプラインに統合される。
論文 参考訳(メタデータ) (2023-03-08T15:21:33Z) - USegScene: Unsupervised Learning of Depth, Optical Flow and Ego-Motion
with Semantic Guidance and Coupled Networks [31.600708674008384]
UegSceneは、ステレオカメラ画像の奥行き、光学的流れ、エゴモーション推定を意味的に導くためのフレームワークである。
一般的なKITTIデータセットを用いて,提案手法が他の手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2022-07-15T13:25:47Z) - Single-image Defocus Deblurring by Integration of Defocus Map Prediction
Tracing the Inverse Problem Computation [25.438654895178686]
本稿では,デフォーカスマップに基づく空間変調を用いた簡易かつ効果的なネットワークを提案する。
実験結果から,本手法は既存の最先端手法よりも定量的,定性的な評価性能を向上できることが示された。
論文 参考訳(メタデータ) (2022-07-07T02:15:33Z) - Deep Depth from Focus with Differential Focus Volume [17.505649653615123]
焦点スタック内の最良焦点画素を抽出し,焦点推定から深度を推定するための畳み込みニューラルネットワーク(CNN)を提案する。
ネットワークの重要な革新は、新しいディープディファレンシャルフォーカスボリューム(DFV)である。
論文 参考訳(メタデータ) (2021-12-03T04:49:51Z) - Decentralized Autofocusing System with Hierarchical Agents [2.7716102039510564]
本稿では,カメラとレンズ焦点設定をインテリジェントに制御する階層型マルチエージェント深部強化学習手法を提案する。
このアルゴリズムはカメラのストリームの潜在表現に依存しており、カメラの全く参照しないチューニングを可能にする最初の方法である。
論文 参考訳(メタデータ) (2021-08-29T13:45:15Z) - Single image deep defocus estimation and its applications [82.93345261434943]
画像パッチを20レベルの曖昧さの1つに分類するために、ディープニューラルネットワークをトレーニングします。
トレーニングされたモデルは、反復重み付きガイドフィルタを適用して改善するパッチのぼかしを決定するために使用される。
その結果、デフォーカスマップは各ピクセルのぼやけた度合いの情報を運ぶ。
論文 参考訳(メタデータ) (2021-07-30T06:18:16Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z) - Rapid Whole Slide Imaging via Learning-based Two-shot Virtual
Autofocusing [57.90239401665367]
ホイルスライドイメージング(WSI)は、デジタル病理の新たな技術である。
本稿では,リフォーカスを行うための機械的調整に依存しないテキスト仮想オートフォーカスの概念を提案する。
論文 参考訳(メタデータ) (2020-03-14T13:40:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。