論文の概要: BokehDiff: Neural Lens Blur with One-Step Diffusion
- arxiv url: http://arxiv.org/abs/2507.18060v1
- Date: Thu, 24 Jul 2025 03:23:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:42.920015
- Title: BokehDiff: Neural Lens Blur with One-Step Diffusion
- Title(参考訳): BokehDiff: 一段拡散型ニューラルレンズブラ
- Authors: Chengxuan Zhu, Qingnan Fan, Qi Zhang, Jinwei Chen, Huaqi Zhang, Chao Xu, Boxin Shi,
- Abstract要約: ボケフディフ(BokehDiff)は、物理的に正確で視覚的に魅力的な結果が得られるレンズボウ描画法である。
提案手法では, 画像形成プロセスと整合する自己認識モジュールを物理に着想を得た。
付加雑音を導入することなく1ステップの推論方式に拡散モデルを適応させ,高品質で忠実な結果を得る。
- 参考スコア(独自算出の注目度): 53.11429878683807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce BokehDiff, a novel lens blur rendering method that achieves physically accurate and visually appealing outcomes, with the help of generative diffusion prior. Previous methods are bounded by the accuracy of depth estimation, generating artifacts in depth discontinuities. Our method employs a physics-inspired self-attention module that aligns with the image formation process, incorporating depth-dependent circle of confusion constraint and self-occlusion effects. We adapt the diffusion model to the one-step inference scheme without introducing additional noise, and achieve results of high quality and fidelity. To address the lack of scalable paired data, we propose to synthesize photorealistic foregrounds with transparency with diffusion models, balancing authenticity and scene diversity.
- Abstract(参考訳): そこで,BokehDiffを紹介した。BokehDiffは物理的に正確で視覚的に魅力的な結果が得られる新しいレンズボウレンダリング手法で,前もって生成拡散の助けとなる。
従来の手法は、深さ推定の精度によって境界付けられ、深さ不連続で人工物を生成する。
提案手法では,物理に着想を得た自己保持モジュールを用いて画像形成プロセスに整合し,奥行き依存性の制約と自己閉塞効果の円を組み込む。
付加雑音を導入することなく1ステップの推論方式に拡散モデルを適応させ,高品質で忠実な結果を得る。
スケーラブルなペアリングデータの欠如に対処するため,拡散モデルによる透過性,信頼性のバランス,シーンの多様性の両立を図ったフォトリアリスティックなフォアグラウンドの合成を提案する。
関連論文リスト
- A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising [43.44633086975204]
本稿では,事前学習した拡散モデルを活用するための直感的な手法を提案する。
次に,提案する線形結合拡散デノイザについて紹介する。
LCDDは最先端のパフォーマンスを達成し、制御され、よく機能するトレードオフを提供する。
論文 参考訳(メタデータ) (2025-03-18T19:02:19Z) - Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models [26.79219274697864]
Bokeh Diffusionはシーン一貫性のあるbokehコントロールフレームワークである。
本稿では,合成ぼかし増量による画像の調整を行うハイブリッド・トレーニング・パイプラインを提案する。
われわれのアプローチは、フレキシブルでレンズライクなぼかし制御を可能にし、インバージョンによる実際の画像編集のような下流アプリケーションをサポートする。
論文 参考訳(メタデータ) (2025-03-11T13:49:12Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
本稿では,現実の雑音に対処するために,逆拡散過程における適応的確率推定とMAP推定を提案する。
実世界の多様なデータセットの実験と分析により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-23T02:52:53Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPM) は近年,条件付きおよび非条件付き画像生成において顕著な成果を上げている。
我々はGradPaintを紹介し、グローバルな一貫性のあるイメージに向けて世代を操る。
我々は、様々なデータセットで訓練された拡散モデルによく適応し、現在最先端の教師付きおよび教師なしの手法を改善している。
論文 参考訳(メタデータ) (2023-09-18T09:36:24Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - The Surprising Effectiveness of Diffusion Models for Optical Flow and
Monocular Depth Estimation [42.48819460873482]
拡散確率モデルは、その印象的な忠実さと多様性で画像生成を変換した。
また,タスク固有のアーキテクチャや損失関数を使わずに,光学的フローと単眼深度の推定に優れることを示す。
論文 参考訳(メタデータ) (2023-06-02T21:26:20Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Image Embedding for Denoising Generative Models [0.0]
逆拡散過程の決定論的性質から拡散入射モデルに着目する。
本研究の副次として,拡散モデルの潜伏空間の構造についてより深い知見を得た。
論文 参考訳(メタデータ) (2022-12-30T17:56:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。