論文の概要: Population-Based Evolution Optimizes a Meta-Learning Objective
- arxiv url: http://arxiv.org/abs/2103.06435v1
- Date: Thu, 11 Mar 2021 03:45:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-08 11:33:09.163382
- Title: Population-Based Evolution Optimizes a Meta-Learning Objective
- Title(参考訳): メタ学習目的を最適化する人口ベース進化
- Authors: Kevin Frans, Olaf Witkowski
- Abstract要約: メタラーニングと適応的進化性は,一連の学習繰り返しの後,高い性能を最適化する。
我々は、この主張を単純な進化的アルゴリズム、Population-Based Meta Learningで実証する。
- 参考スコア(独自算出の注目度): 0.6091702876917279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-learning models, or models that learn to learn, have been a long-desired
target for their ability to quickly solve new tasks. Traditional meta-learning
methods can require expensive inner and outer loops, thus there is demand for
algorithms that discover strong learners without explicitly searching for them.
We draw parallels to the study of evolvable genomes in evolutionary systems --
genomes with a strong capacity to adapt -- and propose that meta-learning and
adaptive evolvability optimize for the same objective: high performance after a
set of learning iterations. We argue that population-based evolutionary systems
with non-static fitness landscapes naturally bias towards high-evolvability
genomes, and therefore optimize for populations with strong learning ability.
We demonstrate this claim with a simple evolutionary algorithm,
Population-Based Meta Learning (PBML), that consistently discovers genomes
which display higher rates of improvement over generations, and can rapidly
adapt to solve sparse fitness and robotic control tasks.
- Abstract(参考訳): メタ学習モデル(あるいは学習を学習するモデル)は、新しいタスクを素早く解決できる彼らの能力にとって、長い間望んでいた目標でした。
従来のメタ学習手法は、高価な内輪と外輪を必要とするため、明示的に探すことなく強力な学習者を見つけるアルゴリズムが要求される。
進化系における進化可能なゲノムの研究 – 適応能力の強いゲノム – と並行して,メタラーニングと適応的進化性は同じ目的,すなわち一連の学習イテレーション後のハイパフォーマンスを最適化することを提案する。
非静的な適応環境を持つ集団ベースの進化システムは、自然に高進化性ゲノムに偏っているため、強力な学習能力を持つ集団に最適化されていると論じている。
我々は、この主張を単純な進化的アルゴリズムPBML(Population-Based Meta Learning)で実証し、世代ごとの改善率の高いゲノムを一貫して発見し、スパースフィットネスとロボット制御タスクの解決に迅速に適応できることを示した。
関連論文リスト
- Meta-Learning an Evolvable Developmental Encoding [7.479827648985631]
生成モデルはブラックボックス最適化のための学習可能な表現であることを示す。
本稿では,表現の質の多様性を生成する能力を最適化することで,そのような表現をメタ学習できるシステムを提案する。
より詳しくは、我々のメタラーニングアプローチが、開発中に細胞が「DNA」文字列ゲノムの異なる部分に参加することができる1つのニューラルセルオートマタを見つけることができることを示す。
論文 参考訳(メタデータ) (2024-06-13T11:52:06Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
大規模言語モデル(LLM)は、様々な分野やインテリジェントエージェントアプリケーションにおいて大きく進歩している。
この問題に対処するために、LLMが自律的に獲得し、洗練し、モデル自身によって生成された経験から学ぶことができる自己進化的アプローチが急速に成長している。
論文 参考訳(メタデータ) (2024-04-22T17:43:23Z) - Evolving Reservoirs for Meta Reinforcement Learning [1.6874375111244329]
本稿では,そのようなプロセスを実現する機構を研究するための計算モデルを提案する。
進化のスケールでは、リカレントニューラルネットワークの族である貯水池を進化させます。
我々は、強化学習(RL)を通じた行動政策の学習を容易にするために、これらの進化した貯水池を利用する。
以上の結果から,貯水池の進化は多様な課題の学習を改善することが示唆された。
論文 参考訳(メタデータ) (2023-12-09T16:11:48Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
本稿では,進化アルゴリズムと並列化強化学習を組み合わせたフレームワークであるDARLEIを提案する。
我々はDARLEIの性能を様々な条件で特徴付け、進化形態の多様性に影響を与える要因を明らかにした。
今後DARLEIを拡張して、よりリッチな環境における多様な形態素間の相互作用を取り入れていきたいと考えています。
論文 参考訳(メタデータ) (2023-12-08T16:51:10Z) - Evolutionary Dynamic Optimization and Machine Learning [0.0]
進化計算(Evolutionary Computation, EC)は、人工知能の強力な分野として出現し、徐々に発展する自然のメカニズムに触発されている。
これらの制限を克服するために、研究者は学習アルゴリズムと進化的手法を統合した。
この統合は、反復探索中にECアルゴリズムによって生成された貴重なデータを活用し、検索空間と人口動態に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-10-12T22:28:53Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Phylogeny-informed fitness estimation [58.720142291102135]
本研究では, 住民の健康評価を推定するために, フィロジェニーを利用した適合度推定手法を提案する。
以上の結果から, 植物性インフォームドフィットネス推定は, ダウンサンプドレキシケースの欠点を軽減することが示唆された。
この研究は、ランタイム系統解析を利用して進化アルゴリズムを改善するための最初のステップとなる。
論文 参考訳(メタデータ) (2023-06-06T19:05:01Z) - Discovering Evolution Strategies via Meta-Black-Box Optimization [23.956974467496345]
メタラーニングによる進化戦略の効果的な更新ルールの発見を提案する。
本手法では,自己注意型アーキテクチャによってパラメータ化された探索戦略を用いる。
進化戦略をスクラッチから自己参照的に訓練することは可能であり、学習された更新ルールは外部メタラーニングループを駆動するために使用される。
論文 参考訳(メタデータ) (2022-11-21T08:48:46Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - Evolving Inborn Knowledge For Fast Adaptation in Dynamic POMDP Problems [5.23587935428994]
本稿では,POMDPにおける自己エンコーダの潜伏空間を利用した制御器を進化させるために,ニューラルネットワークの高度適応性を利用する。
生まれながらの知識とオンラインの可塑性の統合は、進化的でないメタ強化学習アルゴリズムと比較して、迅速な適応と性能の向上を可能にした。
論文 参考訳(メタデータ) (2020-04-27T14:55:08Z) - Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning [65.88200578485316]
本稿では,ロボットが動的変化に迅速に適応できるメタ学習手法を提案する。
提案手法は高雑音環境における動的変化への適応性を著しく改善する。
我々は、動的に変化しながら歩くことを学習する四足歩行ロボットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2020-03-02T22:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。