論文の概要: ELENA: Epigenetic Learning through Evolved Neural Adaptation
- arxiv url: http://arxiv.org/abs/2501.05735v1
- Date: Fri, 10 Jan 2025 06:04:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:28:37.644911
- Title: ELENA: Epigenetic Learning through Evolved Neural Adaptation
- Title(参考訳): ELENA: 進化するニューラル適応によるエピジェネティック学習
- Authors: Boris Kriuk, Keti Sulamanidze, Fedor Kriuk,
- Abstract要約: ELENAは、エピジェネティックなメカニズムを取り入れ、コア進化アプローチの適応性を高める新しい進化フレームワークである。
3つのエピジェネティックタグは、よりインテリジェントな仮説のランドスケープ探索を促進するソリューションスペース探索の導出を支援する。
実験により、ELENAは、しばしばネットワーク最適化タスクにおける最先端の手法を超越して、競争結果を達成することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Despite the success of metaheuristic algorithms in solving complex network optimization problems, they often struggle with adaptation, especially in dynamic or high-dimensional search spaces. Traditional approaches can become stuck in local optima, leading to inefficient exploration and suboptimal solutions. Most of the widely accepted advanced algorithms do well either on highly complex or smaller search spaces due to the lack of adaptation. To address these limitations, we present ELENA (Epigenetic Learning through Evolved Neural Adaptation), a new evolutionary framework that incorporates epigenetic mechanisms to enhance the adaptability of the core evolutionary approach. ELENA leverages compressed representation of learning parameters improved dynamically through epigenetic tags that serve as adaptive memory. Three epigenetic tags (mutation resistance, crossover affinity, and stability score) assist with guiding solution space search, facilitating a more intelligent hypothesis landscape exploration. To assess the framework performance, we conduct experiments on three critical network optimization problems: the Traveling Salesman Problem (TSP), the Vehicle Routing Problem (VRP), and the Maximum Clique Problem (MCP). Experiments indicate that ELENA achieves competitive results, often surpassing state-of-the-art methods on network optimization tasks.
- Abstract(参考訳): 複雑なネットワーク最適化問題の解法におけるメタヒューリスティックアルゴリズムの成功にもかかわらず、特に動的または高次元の探索空間において適応に苦慮することが多い。
従来のアプローチは、局所的な最適化において立ち往生し、非効率な探索と準最適解をもたらす。
広く受け入れられている高度なアルゴリズムのほとんどは、適応の欠如により、非常に複雑なまたはより小さな検索空間でうまく機能する。
これらの制限に対処するため、進化的アプローチの適応性を高めるためにエピジェネティックなメカニズムを組み込んだ新しい進化的フレームワークであるELENA(Epigenetic Learning through Evolved Neural Adaptation)を提案する。
ELENAは適応メモリとして機能するエピジェネティックタグによって動的に改善された学習パラメータの圧縮表現を利用する。
3つのエピジェネティックタグ(突然変異抵抗、交叉親和性、安定性スコア)は、解空間探索の導出を支援し、よりインテリジェントな仮説ランドスケープ探索を促進する。
フレームワークの性能を評価するため、トラベルセールスマン問題(TSP)、車両ルーティング問題(VRP)、最大傾き問題(MCP)の3つの重要なネットワーク最適化問題について実験を行った。
実験により、ELENAは、しばしばネットワーク最適化タスクにおける最先端の手法を超越した競争結果が得られることが示された。
関連論文リスト
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
そこで本研究では,局所探索機能を組み込んだ2段階学習手法と集団最適化アルゴリズムを併用した新しい手法を提案する。
実験の結果,提案手法は最先端の勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-26T17:31:15Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness [15.29595828816055]
本研究は,多目的進化解析アルゴリズムMO-EvoPruneDeepTLを提案する。
我々は、トランスファーラーニングを使用して、遺伝的アルゴリズムによって進化したスパース層に置き換えることで、ディープニューラルネットワークの最後の層を適応します。
実験の結果,提案手法は全ての目的に対して有望な結果が得られ,直接的な関係が示された。
論文 参考訳(メタデータ) (2023-02-20T19:33:38Z) - Simulation-guided Beam Search for Neural Combinatorial Optimization [13.072343634530883]
ニューラル最適化問題に対するシミュレーション誘導ビームサーチ(SGBS)を提案する。
我々は、SGBSと効率的なアクティブサーチ(EAS)を併用し、SGBSはEASでバックプロパゲーションされたソリューションの品質を高める。
提案手法をよく知られたCOベンチマークで評価し,SGBSが合理的な仮定で得られた解の質を著しく向上することを示す。
論文 参考訳(メタデータ) (2022-07-13T13:34:35Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
一般的な問題を解決するための適応アルゴリズムのための普遍的な枠組みを設計することが望まれる。
特に,本フレームワークは,非収束的設定支援の下で適応的手法を提供する。
論文 参考訳(メタデータ) (2021-06-15T15:16:28Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains [14.787379075870383]
本稿では、Tr-GOと呼ばれる歩行最適化のための移動学習に基づく進化的フレームワークを提案する。
この考え方は、トランスファーラーニング技術を用いて高品質な人口を初期化することを目的としており、どんな集団ベースの最適化アルゴリズムでもこのフレームワークにシームレスに統合できる。
実験の結果,3つの多目的進化アルゴリズムに基づく歩行最適化問題に対する提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-12-24T16:41:36Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Evolving Inborn Knowledge For Fast Adaptation in Dynamic POMDP Problems [5.23587935428994]
本稿では,POMDPにおける自己エンコーダの潜伏空間を利用した制御器を進化させるために,ニューラルネットワークの高度適応性を利用する。
生まれながらの知識とオンラインの可塑性の統合は、進化的でないメタ強化学習アルゴリズムと比較して、迅速な適応と性能の向上を可能にした。
論文 参考訳(メタデータ) (2020-04-27T14:55:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。