論文の概要: Privacy-preserving Object Detection
- arxiv url: http://arxiv.org/abs/2103.06587v1
- Date: Thu, 11 Mar 2021 10:34:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 03:22:52.027050
- Title: Privacy-preserving Object Detection
- Title(参考訳): プライバシー保護オブジェクト検出
- Authors: Peiyang He, Charlie Griffin, Krzysztof Kacprzyk, Artjom Joosen,
Michael Collyer, Aleksandar Shtedritski, Yuki M. Asano
- Abstract要約: 我々は,COCOにおけるオブジェクト検出において,顔のぼやけによるデータセットの匿名化と,性別や肌のトーン次元に沿ったバランスの取れた顔の交換は,プライバシを保ち,偏りを部分的に保ちながらオブジェクト検出性能を維持することができることを示した。
- 参考スコア(独自算出の注目度): 52.77024349608834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy considerations and bias in datasets are quickly becoming
high-priority issues that the computer vision community needs to face. So far,
little attention has been given to practical solutions that do not involve
collection of new datasets. In this work, we show that for object detection on
COCO, both anonymizing the dataset by blurring faces, as well as swapping faces
in a balanced manner along the gender and skin tone dimension, can retain
object detection performances while preserving privacy and partially balancing
bias.
- Abstract(参考訳): データセットにおけるプライバシーの考慮とバイアスは、コンピュータビジョンコミュニティが直面する必要がある優先度の高い問題になりつつある。
これまでのところ、新しいデータセットの収集を含まない実用的なソリューションにはほとんど注意が払われていない。
本研究は,COCOにおけるオブジェクト検出において,顔のぼやけによるデータセットの匿名化と,性別や肌のトーン次元に沿ったバランスの取れた顔の交換が,プライバシを保ち,偏りを部分的に保ちながらオブジェクト検出性能を維持することを示す。
関連論文リスト
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - SHAN: Object-Level Privacy Detection via Inference on Scene Heterogeneous Graph [5.050631286347773]
プライバシオブジェクト検出は、画像内のプライベートオブジェクトを正確に見つけることを目的としている。
既存の手法は、精度、一般化、解釈可能性の重大な欠陥に悩まされている。
本稿では、画像からシーン異質グラフを構成するモデルであるSHAN(Scene Heterogeneous Graph Attention Network)を提案する。
論文 参考訳(メタデータ) (2024-03-14T08:32:14Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and
Applications [76.88662943995641]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを扱う能力のため、大きな注目を集めている。
この問題に対処するため、研究者らはプライバシー保護のGNNの開発を開始した。
この進歩にもかかわらず、攻撃の包括的概要と、グラフドメインのプライバシを保存するためのテクニックが欠如している。
論文 参考訳(メタデータ) (2023-08-31T00:31:08Z) - Person Re-Identification without Identification via Event Anonymization [23.062038973576296]
ディープラーニングは、イベントカメラからのイメージを高い忠実度で再構築することができ、イベントベースのビジョンアプリケーションに対するプライバシーに対する潜在的な脅威を再導入した。
本稿では,プライバシを保護し,人物ReIdのような下流タスクを実行するという2つの目的のために,エンドツーエンドのネットワークアーキテクチャを共同で提案する。
論文 参考訳(メタデータ) (2023-08-08T17:04:53Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Anonymization for Skeleton Action Recognition [6.772319578308409]
我々は,スケルトンデータセットから潜在的なプライバシー漏洩を保護するために,匿名化アルゴリズムの2つの変種を提案する。
実験結果から、匿名化されたデータセットは、動作認識性能に限界効果がある一方で、プライバシー漏洩のリスクを低減できることが示された。
論文 参考訳(メタデータ) (2021-11-30T05:13:20Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Subverting Privacy-Preserving GANs: Hiding Secrets in Sanitized Images [13.690485523871855]
最先端のアプローチでは、プライバシ保護による生成的敵ネットワーク(PP-GAN)を使用して、ユーザのアイデンティティを漏洩することなく、信頼できる表情認識を可能にする。
PP-GANの高感度化出力画像に機密識別データを隠蔽して後で抽出できることを示す。
論文 参考訳(メタデータ) (2020-09-19T19:02:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。