論文の概要: A Summary of Privacy-Preserving Data Publishing in the Local Setting
- arxiv url: http://arxiv.org/abs/2312.11845v1
- Date: Tue, 19 Dec 2023 04:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 11:47:54.987178
- Title: A Summary of Privacy-Preserving Data Publishing in the Local Setting
- Title(参考訳): ローカル環境におけるプライバシ保護データ公開の概要
- Authors: Wenjun Lin, Jiahao Qian, Wenwen Liu, Lang Wu,
- Abstract要約: 統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
- 参考スコア(独自算出の注目度): 0.6749750044497732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of collected, processed, and shared data has given rise to concerns about individuals' privacy. Consequently, various laws and regulations have been established to oversee how organizations handle and safeguard data. One such method is Statistical Disclosure Control, which aims to minimize the risk of exposing confidential information by de-identifying it. This de-identification is achieved through specific privacy-preserving techniques. However, a trade-off exists: de-identified data can often lead to a loss of information, which might impact the accuracy of data analysis and the predictive capability of models. The overarching goal remains to safeguard individual privacy while preserving the data's interpretability, meaning its overall usefulness. Despite advances in Statistical Disclosure Control, the field continues to evolve, with no definitive solution that strikes an optimal balance between privacy and utility. This survey delves into the intricate processes of de-identification. We outline the current privacy-preserving techniques employed in microdata de-identification, delve into privacy measures tailored for various disclosure scenarios, and assess metrics for information loss and predictive performance. Herein, we tackle the primary challenges posed by privacy constraints, overview predominant strategies to mitigate these challenges, categorize privacy-preserving techniques, offer a theoretical assessment of current comparative research, and highlight numerous unresolved issues in the domain.
- Abstract(参考訳): 収集、処理、共有データの指数関数的な成長は個人のプライバシーに対する懸念を引き起こしている。
その結果、組織がどのようにデータを扱い、保護するかを監督する様々な法律や規則が制定された。
このような手法の1つが統計開示制御であり、機密情報の漏洩のリスクを最小化することを目的としている。
この識別は、特定のプライバシー保護技術によって達成される。
しかし、トレードオフが存在する: 特定されていないデータは、しばしば情報の喪失につながるため、データ分析の精度とモデルの予測能力に影響を及ぼす可能性がある。
包括的な目標は、データの解釈可能性を維持しながら、個人のプライバシを保護することだ。
統計開示制御の進歩にもかかわらず、この分野は進化を続けており、プライバシーとユーティリティの最適なバランスをとる決定的な解決策は存在しない。
この調査は、非識別の複雑な過程を掘り下げるものである。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
ここでは、プライバシ制約によって引き起こされる主な課題に取り組み、これらの課題を緩和し、プライバシ保護のテクニックを分類し、現在の比較研究の理論的評価を提供し、ドメイン内の多くの未解決問題を強調します。
関連論文リスト
- Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - The Data Minimization Principle in Machine Learning [61.17813282782266]
データ最小化は、収集、処理、保持されるデータの量を減らすことを目的としている。
様々な国際データ保護規制によって支持されている。
しかし、厳密な定式化が欠如しているため、その実践的な実装は依然として課題である。
論文 参考訳(メタデータ) (2024-05-29T19:40:27Z) - Guarding Multiple Secrets: Enhanced Summary Statistic Privacy for Data Sharing [3.7274308010465775]
本稿では,データ共有における多極的サマリ統計量の定義,分析,保護を行う新しいフレームワークを提案する。
我々は,攻撃者がデータ公開機構のプライバシーリスクを,サマリ統計シークレットの推測に成功している最悪の確率で測定する。
論文 参考訳(メタデータ) (2024-05-22T16:30:34Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Towards a Data Privacy-Predictive Performance Trade-off [2.580765958706854]
分類タスクにおけるデータプライバシと予測性能のトレードオフの存在を評価する。
従来の文献とは異なり、プライバシーのレベルが高ければ高いほど、予測性能が向上することを確認した。
論文 参考訳(メタデータ) (2022-01-13T21:48:51Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
本稿では,時系列データとスマートメータ(SM)電力消費測定の文脈における問題点について検討する。
我々は、考慮された設定において、より意味のあるプライバシーの尺度として、指向情報(DI)を導入します。
最悪のシナリオにおけるSMs測定による実世界のデータセットに関する実証的研究は、プライバシとユーティリティの既存のトレードオフを示している。
論文 参考訳(メタデータ) (2020-11-20T13:41:11Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - On the Privacy-Utility Tradeoff in Peer-Review Data Analysis [34.0435377376779]
ピアレビューの改善に関する研究における大きな障害は、ピアレビューデータの利用不可能である。
我々は、特定の会議のピアレビューデータのプライバシー保護のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-29T21:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。