論文の概要: Symbolic Reinforcement Learning for Safe RAN Control
- arxiv url: http://arxiv.org/abs/2103.06602v1
- Date: Thu, 11 Mar 2021 10:56:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 04:31:09.092927
- Title: Symbolic Reinforcement Learning for Safe RAN Control
- Title(参考訳): 安全なRAN制御のための記号強化学習
- Authors: Alexandros Nikou, Anusha Mujumdar, Marin Orlic, Aneta Vulgarakis
Feljan
- Abstract要約: 無線アクセスネットワーク(RAN)アプリケーションにおける安全な制御のためのシンボリック強化学習(SRL)アーキテクチャを紹介します。
本ツールでは,LTL(Linear Temporal Logic)で表現された高レベルの安全仕様を選択して,所定のセルネットワーク上で動作しているRLエージェントをシールドする。
ユーザインタフェース(ui)を用いて,ユーザがインテントの仕様をアーキテクチャに設定し,許可されたアクションとブロックされたアクションの違いを検査する。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we demonstrate a Symbolic Reinforcement Learning (SRL)
architecture for safe control in Radio Access Network (RAN) applications. In
our automated tool, a user can select a high-level safety specifications
expressed in Linear Temporal Logic (LTL) to shield an RL agent running in a
given cellular network with aim of optimizing network performance, as measured
through certain Key Performance Indicators (KPIs). In the proposed
architecture, network safety shielding is ensured through model-checking
techniques over combined discrete system models (automata) that are abstracted
through reinforcement learning. We demonstrate the user interface (UI) helping
the user set intent specifications to the architecture and inspect the
difference in allowed and blocked actions.
- Abstract(参考訳): 本稿では,無線アクセスネットワーク(RAN)アプリケーションにおいて,安全制御のためのシンボル強化学習(SRL)アーキテクチャを実証する。
自動ツールでは、特定のキーパフォーマンス指標(KPI)によって測定されたネットワーク性能の最適化を目的として、LTL(Linear Temporal Logic)で表現された高レベルの安全仕様を選択して、所定のセルネットワーク上で動作しているRLエージェントを保護することができる。
提案するアーキテクチャでは、強化学習によって抽象化された統合離散システムモデル(automata)に対して、モデルチェック技術によってネットワーク安全遮蔽が保証される。
ユーザインタフェース(ui)を用いて,ユーザがインテントの仕様をアーキテクチャに設定し,許可されたアクションとブロックされたアクションの違いを検査する。
関連論文リスト
- Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
本稿では,学習したRLポリシーの性能を検証するための,原則的ルックアヘッド遮蔽アルゴリズムを提案する。
我々のアルゴリズムは他の遮蔽手法と異なり、システムの安全性関連力学の事前知識を必要としない。
我々は,国家依存型安全ラベルを持つアタリゲームにおいて,他の安全を意識したアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-27T15:19:45Z) - Value Functions are Control Barrier Functions: Verification of Safe
Policies using Control Theory [46.85103495283037]
本稿では,制御理論から学習値関数への検証手法の適用方法を提案する。
我々は値関数と制御障壁関数の間の関係を確立する原定理を定式化する。
我々の研究は、RLベースの制御システムの汎用的でスケーラブルで検証可能な設計のための公式なフレームワークに向けた重要な一歩である。
論文 参考訳(メタデータ) (2023-06-06T21:41:31Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
新たなOpen Radio Access Network(O-RAN)におけるデバイスの大量ランダムアクセスは、アクセス制御と管理に大きな課題をもたらします。
閉ループアクセス制御の強化学習(RL)支援方式を提案する。
深部RL支援SAUDは、連続的かつ高次元の状態と行動空間を持つ複雑な環境を解決するために提案されている。
論文 参考訳(メタデータ) (2023-03-05T12:25:49Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
強化学習(Reinforcement Learning, RL)は,現実のアプリケーションに対して限られた成功を収める,有望なアプローチである。
本稿では,複数の側面からなる学習型制御フレームワークを提案する。
ECBFをベースとしたモジュラーディープRLアルゴリズムは,ほぼ完全な成功率を達成し,高い確率で安全性を保護することを示す。
論文 参考訳(メタデータ) (2021-09-07T00:51:12Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z) - Model-Based Safe Policy Search from Signal Temporal Logic Specifications
Using Recurrent Neural Networks [1.005130974691351]
本稿では,STL (Signal Temporal Logic) の仕様からコントローラを学習するためのポリシー探索手法を提案する。
システムモデルは未知であり、制御ポリシとともに学習される。
その結果,本手法は非常に少ないシステム実行で所定の仕様を満たせることが明らかとなり,オンライン制御に活用できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-03-29T20:21:55Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。