論文の概要: MagFace: A Universal Representation for Face Recognition and Quality
Assessment
- arxiv url: http://arxiv.org/abs/2103.06627v1
- Date: Thu, 11 Mar 2021 11:58:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 14:45:07.128096
- Title: MagFace: A Universal Representation for Face Recognition and Quality
Assessment
- Title(参考訳): MagFace: 顔認識と品質評価のためのユニバーサル表現
- Authors: Qiang Meng, Shichao Zhao, Zhida Huang, Feng Zhou
- Abstract要約: 本論文では,与えられた顔の質を測ることができる普遍的特徴埋め込みを学習する損失のカテゴリであるMagFaceを提案する。
新しい損失の下では、主題が認識される可能性が高い場合、単調に埋め込み機能の大きさが増加することが証明できます。
さらに、MagFaceは、ハードサンプルを押しながら簡単にサンプルをクラスセンターに引っ張ることで、クラス内の機能を学ぶための適応メカニズムを導入している。
- 参考スコア(独自算出の注目度): 6.7044749347155035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of face recognition system degrades when the variability of
the acquired faces increases. Prior work alleviates this issue by either
monitoring the face quality in pre-processing or predicting the data
uncertainty along with the face feature. This paper proposes MagFace, a
category of losses that learn a universal feature embedding whose magnitude can
measure the quality of the given face. Under the new loss, it can be proven
that the magnitude of the feature embedding monotonically increases if the
subject is more likely to be recognized. In addition, MagFace introduces an
adaptive mechanism to learn a wellstructured within-class feature distributions
by pulling easy samples to class centers while pushing hard samples away. This
prevents models from overfitting on noisy low-quality samples and improves face
recognition in the wild. Extensive experiments conducted on face recognition,
quality assessments as well as clustering demonstrate its superiority over
state-of-the-arts. The code is available at
https://github.com/IrvingMeng/MagFace.
- Abstract(参考訳): 顔認識システムの性能は、取得した顔の変動が増加すると低下する。
先行作業は、前処理の顔品質を監視するか、顔機能と一緒にデータの不確実性を予測することにより、この問題を緩和します。
本論文では,与えられた顔の質を測ることができる普遍的特徴埋め込みを学習する損失のカテゴリであるMagFaceを提案する。
新しい損失の下では、主題が認識される可能性が高い場合、単調に埋め込み機能の大きさが増加することが証明できます。
さらに、MagFaceは、ハードサンプルを押しながら、簡単なサンプルをクラスセンターに引っ張ることで、よく構造化されたクラス内機能分布を学ぶための適応メカニズムを導入している。
これにより、ノイズの多い低品質サンプルでのモデルオーバーフィットを防ぎ、野生の顔認識を改善します。
顔認識、品質評価、クラスタリングに関する広範な実験は、最先端のものよりも優位性を示しています。
コードはhttps://github.com/IrvingMeng/MagFace.comで入手できる。
関連論文リスト
- Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
顔スワップ法における品質測定の基準は、操作された画像とソース画像の間のいくつかの距離に依存する。
顔スワップ用に設計された新しい非参照画像品質評価法(NR-IQA)を提案する。
論文 参考訳(メタデータ) (2024-06-04T01:36:29Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Are Face Detection Models Biased? [69.68854430664399]
顔領域の局所化による顔検出領域のバイアスについて検討した。
既存の顔検出データセットの多くは、このような分析に適したアノテーションを欠いている。
性別や肌の音色による検出精度の相違を観察し, 画像診断以外の要因の相互関係を考察した。
論文 参考訳(メタデータ) (2022-11-07T14:27:55Z) - AdaFace: Quality Adaptive Margin for Face Recognition [56.99208144386127]
本稿では、損失関数、すなわち画像品質における適応性の別の側面を紹介する。
そこで本稿では,画像品質に基づいて異なる難易度を示す新たな損失関数を提案する。
提案手法は,4つのデータセット上でのSoTA(State-of-the-art)による顔認識性能を向上させる。
論文 参考訳(メタデータ) (2022-04-03T01:23:41Z) - On the (Limited) Generalization of MasterFace Attacks and Its Relation
to the Capacity of Face Representations [11.924504853735645]
実験および理論的研究におけるMasterFace攻撃の一般化可能性について検討する。
顔空間のアイデンティティが適切に分離されていると仮定して、顔容量と最大MasterFaceカバレッジを推定する。
MasterFacesは顔認識システムに対する脅威ではなく、顔認識モデルの堅牢性を高めるツールである、と結論付けている。
論文 参考訳(メタデータ) (2022-03-23T13:02:41Z) - KappaFace: Adaptive Additive Angular Margin Loss for Deep Face
Recognition [22.553018305072925]
我々は,クラス難易度と不均衡度に基づいて相対的重要性を変調する,KappaFaceと呼ばれる新しい適応戦略を導入する。
一般的な顔のベンチマーク実験により,提案手法は最先端技術よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2022-01-19T03:05:24Z) - FaceQgen: Semi-Supervised Deep Learning for Face Image Quality
Assessment [19.928262020265965]
FaceQgenは、ジェネレーティブ・アドバイサル・ネットワークに基づく顔画像の非参照品質評価手法である。
顔認識精度に関連するスカラー品質尺度を生成する。
SCfaceデータベースを使用して、スクラッチからトレーニングされる。
論文 参考訳(メタデータ) (2022-01-03T17:22:38Z) - Joint Face Image Restoration and Frontalization for Recognition [79.78729632975744]
現実世界のシナリオでは、大きなポーズ、悪い照明、低解像度、ぼやけ、ノイズなど、多くの要因が顔認識性能を損なう可能性がある。
それまでの努力は通常、まず品質の低い顔から高品質な顔に復元し、次に顔認識を行う。
与えられた低品質の顔からフロンダル化された高品質の顔を復元する多段階顔復元モデルを提案する。
論文 参考訳(メタデータ) (2021-05-12T03:52:41Z) - SER-FIQ: Unsupervised Estimation of Face Image Quality Based on
Stochastic Embedding Robustness [15.431761867166]
任意の顔認識モデルに基づいて顔の質を測定する新しい概念を提案する。
提案手法を,学界と産業界からの6つの最先端アプローチと比較した。
論文 参考訳(メタデータ) (2020-03-20T16:50:30Z) - On the Robustness of Face Recognition Algorithms Against Attacks and
Bias [78.68458616687634]
顔認識アルゴリズムは非常に高い認識性能を示しており、現実のアプリケーションに適していることを示唆している。
精度が向上したにもかかわらず、これらのアルゴリズムの攻撃や偏見に対する堅牢性は問題視されている。
本稿では,顔認識アルゴリズムの頑健性に挑戦する様々な方法について要約する。
論文 参考訳(メタデータ) (2020-02-07T18:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。