論文の概要: Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
- arxiv url: http://arxiv.org/abs/2103.06995v1
- Date: Thu, 11 Mar 2021 23:10:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 01:12:57.138085
- Title: Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
- Title(参考訳): Exa.TrkX TrackMLパイプラインの物理と計算性能
- Authors: Xiangyang Ju (1) and Daniel Murnane (1) and Paolo Calafiura (1) and
Nicholas Choma (1) and Sean Conlon (1) and Steve Farrell (1) and Yaoyuan Xu
(1) and Maria Spiropulu (2) and Jean-Roch Vlimant (2) and Adam Aurisano (3)
and Jeremy Hewes (3) and Giuseppe Cerati (4) and Lindsey Gray (4) and Thomas
Klijnsma (4) and Jim Kowalkowski (4) and Markus Atkinson (5) and Mark
Neubauer (5) and Gage DeZoort (6) and Savannah Thais (6) and Aditi Chauhan
(7) and Alex Schuy (7) and Shih-Chieh Hsu (7) and Alex Ballow (8) and and
Alina Lazar (8) ((1) Lawrence Berkeley National Laboratory, (2) California
Institute of Technology, (3) University of Cincinnati, (4) Fermi National
Accelerator Laboratory, (5) University of Illinois at Urbana-Champaign, (6)
Princeton University, (7) University of Washington, (8) Youngstown State
University)
- Abstract要約: 本論文では、Exa.TrkXパイプラインの物理性能と計算性能を研究するために必要な開発を文書化する。
パイプラインは、生産追跡アルゴリズムに似たトラッキング効率と純度を実現します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Exa.TrkX project has applied geometric learning concepts such as metric
learning and graph neural networks to HEP particle tracking. The Exa.TrkX
tracking pipeline clusters detector measurements to form track candidates and
filters them. The pipeline, originally developed using the TrackML dataset (a
simulation of an LHC-like tracking detector), has been demonstrated on various
detectors, including the DUNE LArTPC and the CMS High-Granularity Calorimeter.
This paper documents new developments needed to study the physics and computing
performance of the Exa.TrkX pipeline on the full TrackML dataset, a first step
towards validating the pipeline using ATLAS and CMS data. The pipeline achieves
tracking efficiency and purity similar to production tracking algorithms.
Crucially for future HEP applications, the pipeline benefits significantly from
GPU acceleration, and its computational requirements scale close to linearly
with the number of particles in the event.
- Abstract(参考訳): Exa.TrkXプロジェクトは、計量学習やグラフニューラルネットワークなどの幾何学的学習の概念をHEP粒子追跡に適用した。
exa.trkxトラッキングパイプラインクラスタ検出器計測により、トラック候補を形成、フィルタリングする。
TrackMLデータセット(LHCに似た追跡検出器のシミュレーション)を使用して開発されたパイプラインは、DUNE LArTPCやCMS High-Granularity Calorimeterなど、さまざまな検出器で実証されている。
本論文では、完全なTrackMLデータセット上でExa.TrkXパイプラインの物理性能と計算性能を研究するために必要な新しい開発を文書化し、ATLASとCMSデータを使用してパイプラインを検証するための第一歩を述べる。
パイプラインは、生産追跡アルゴリズムに似たトラッキング効率と純度を実現します。
将来のHEPアプリケーションにとって重要なこととして、パイプラインはGPUアクセラレーションから大きな恩恵を受け、その計算要求はイベントの粒子数と線形に近い規模にスケールする。
関連論文リスト
- Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - PARTIME: Scalable and Parallel Processing Over Time with Deep Neural
Networks [68.96484488899901]
PartIMEは、データが継続的にストリーミングされるたびにニューラルネットワークを高速化するように設計されたライブラリです。
PartIMEは、ストリームから利用可能になった時点で、各データサンプルの処理を開始する。
オンライン学習において、PartialIMEと古典的な非並列ニューラル計算を経験的に比較するために実験が行われる。
論文 参考訳(メタデータ) (2022-10-17T14:49:14Z) - Data Debugging with Shapley Importance over End-to-End Machine Learning
Pipelines [27.461398584509755]
DataScopeは、エンドツーエンドの機械学習パイプライン上でトレーニング例のShapley値を効率的に計算する最初のシステムである。
以上の結果から,DataScopeは最先端のモンテカルロ法よりも最大4桁高速であることがわかった。
論文 参考訳(メタデータ) (2022-04-23T19:29:23Z) - Machine Learning for Particle Flow Reconstruction at CMS [7.527568379083754]
CMSのための機械学習に基づく粒子フローアルゴリズムの実装について詳述する。
このアルゴリズムは、温度計クラスタとトラックに基づいて安定粒子を再構成し、グローバルなイベント再構成を提供する。
論文 参考訳(メタデータ) (2022-03-01T10:11:44Z) - Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning
Preprocessing Pipelines [77.45213180689952]
ディープラーニングにおける前処理パイプラインは、トレーニングプロセスを忙しくするための十分なデータスループットの提供を目的としている。
エンドツーエンドのディープラーニングパイプラインのためのデータセットを効率的に準備する新たな視点を導入する。
チューニングされていないシステムに比べてスループットが3倍から13倍に向上する。
論文 参考訳(メタデータ) (2022-02-17T14:31:58Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Graph Neural Networks for Charged Particle Tracking on FPGAs [2.6402980149746913]
CERN大型ハドロン衝突型加速器(LHC)における衝突時の荷電粒子軌道の決定は重要な問題であるが難しい問題である。
グラフニューラルネットワーク(GNN)は、幾何学的なディープラーニングアルゴリズムの一種であり、このタスクにうまく適用されている。
我々は、GNNをフィールドプログラマブルゲートアレイ(FPGA)のためのファームウェアに変換するための、$textthls4ml$と呼ばれるより広範なツールに統合された自動翻訳ワークフローを導入する。
論文 参考訳(メタデータ) (2021-12-03T17:56:10Z) - Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision
Datasets from 3D Scans [103.92680099373567]
本稿では,実世界の包括的3Dスキャンからマルチタスク視覚データセットをパラメトリックサンプリングし,レンダリングするパイプラインを提案する。
サンプリングパラメータを変更することで、生成されたデータセットを“ステア”して、特定の情報を強調することが可能になる。
生成されたスタータデータセットでトレーニングされた共通アーキテクチャは、複数の共通ビジョンタスクとベンチマークで最先端のパフォーマンスに達した。
論文 参考訳(メタデータ) (2021-10-11T04:21:46Z) - MLPF: Efficient machine-learned particle-flow reconstruction using graph
neural networks [0.0]
汎用粒子検出器では、粒子フローアルゴリズムを用いて事象の粒子レベルビューを再構築することができる。
並列化可能,スケーラブル,グラフニューラルネットワークに基づく,エンドツーエンドのトレーニング可能,マシン学習型粒子フローアルゴリズムを提案する。
陽子-陽子衝突で生成したトップクォーク-反クォーク対のモンテカルロデータセット上で,アルゴリズムの物理および計算性能について報告する。
論文 参考訳(メタデータ) (2021-01-21T12:47:54Z) - Faster object tracking pipeline for real time tracking [0.0]
マルチオブジェクトトラッキング(MOT)は、視覚ベースのアプリケーションにとって難しい実践的問題である。
本稿では,検出に基づく物体追跡手法の高速化に有効な汎用パイプラインについて紹介する。
論文 参考訳(メタデータ) (2020-11-08T06:33:48Z) - A DICOM Framework for Machine Learning Pipelines against Real-Time
Radiology Images [50.222197963803644]
Nifflerは、研究クラスタでの機械学習パイプラインの実行を可能にする統合フレームワークである。
ニフラーはDigital Imaging and Communications in Medicine (DICOM)プロトコルを使用して画像データの取得と保存を行っている。
我々は,そのアーキテクチャと3つのユースケースを提示する: リアルタイムに画像から下大静脈フィルターを検出すること,スキャナ利用の同定,およびスキャナクロックの校正。
論文 参考訳(メタデータ) (2020-04-16T21:06:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。