論文の概要: MLPF: Efficient machine-learned particle-flow reconstruction using graph
neural networks
- arxiv url: http://arxiv.org/abs/2101.08578v2
- Date: Wed, 10 Mar 2021 15:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 15:35:09.282589
- Title: MLPF: Efficient machine-learned particle-flow reconstruction using graph
neural networks
- Title(参考訳): MLPF:グラフニューラルネットワークを用いた効率的な機械学習粒子フロー再構成
- Authors: Joosep Pata, Javier Duarte, Jean-Roch Vlimant, Maurizio Pierini, Maria
Spiropulu
- Abstract要約: 汎用粒子検出器では、粒子フローアルゴリズムを用いて事象の粒子レベルビューを再構築することができる。
並列化可能,スケーラブル,グラフニューラルネットワークに基づく,エンドツーエンドのトレーニング可能,マシン学習型粒子フローアルゴリズムを提案する。
陽子-陽子衝突で生成したトップクォーク-反クォーク対のモンテカルロデータセット上で,アルゴリズムの物理および計算性能について報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In general-purpose particle detectors, the particle-flow algorithm may be
used to reconstruct a comprehensive particle-level view of the event by
combining information from the calorimeters and the trackers, significantly
improving the detector resolution for jets and the missing transverse momentum.
In view of the planned high-luminosity upgrade of the CERN Large Hadron
Collider (LHC), it is necessary to revisit existing reconstruction algorithms
and ensure that both the physics and computational performance are sufficient
in an environment with many simultaneous proton-proton interactions (pileup).
Machine learning may offer a prospect for computationally efficient event
reconstruction that is well-suited to heterogeneous computing platforms, while
significantly improving the reconstruction quality over rule-based algorithms
for granular detectors. We introduce MLPF, a novel, end-to-end trainable,
machine-learned particle-flow algorithm based on parallelizable,
computationally efficient, and scalable graph neural networks optimized using a
multi-task objective on simulated events. We report the physics and
computational performance of the MLPF algorithm on a Monte Carlo dataset of top
quark-antiquark pairs produced in proton-proton collisions in conditions
similar to those expected for the high-luminosity LHC. The MLPF algorithm
improves the physics response with respect to a rule-based benchmark algorithm
and demonstrates computationally scalable particle-flow reconstruction in a
high-pileup environment.
- Abstract(参考訳): 汎用粒子検出器では、粒子フローアルゴリズムを用いて、熱量計とトラッカーからの情報を組み合わせることで、事象の包括的粒子レベルビューを再構築することができ、ジェットの検出器分解能と欠落する横運動量を大幅に改善することができる。
CERN 大型ハドロン衝突型加速器 (LHC) の高輝度化の計画を考えると、既存の再構成アルゴリズムを再検討し、多くの陽子-陽子相互作用を持つ環境において、物理と計算性能の両方が十分であることを保証する必要がある。
機械学習は、ヘテロジニアスコンピューティングプラットフォームに適した計算効率の良いイベント再構成の見通しを提供する一方で、粒状検出器のルールベースのアルゴリズムよりも、再現性を大幅に改善する。
本稿では、並列化可能で計算効率が高く、スケーラブルなグラフニューラルネットワークをシミュレーションイベントにマルチタスク目的を用いて最適化した、新しい、エンドツーエンドのトレーニング可能な、マシン主導のパーティクルフローアルゴリズムであるmlpfを紹介する。
プロトン-陽子衝突で生成するトップクォーク-反クォーク対のモンテカルロデータセットにおけるmlpfアルゴリズムの物理と計算性能について,高輝度lhcに期待される条件と類似した条件で報告する。
mlpfアルゴリズムは、ルールベースベンチマークアルゴリズムに対する物理応答を改善し、ハイピレップ環境における計算スケーラブルな粒子フロー再構成を実証する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Quantum-Annealing-Inspired Algorithms for Track Reconstruction at High-Energy Colliders [0.0]
トラック再構成は二次的制約のない2進最適化問題として定式化することができる。
粒子追跡問題の解法としてシミュレートされた分岐アルゴリズムを用いることができることを示す。
論文 参考訳(メタデータ) (2024-02-22T17:19:03Z) - Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors [1.4609888393206634]
電子-陽電子衝突における事象再構成のためのスケーラブルな機械学習モデルについて, フル検出器シミュレーションに基づく検討を行った。
グラフニューラルネットワークとカーネルベースのトランスフォーマーを比較し、現実的な再構築を実現しつつ、操作を回避できることを実証する。
最良のグラフニューラルネットワークモデルでは、ルールベースのアルゴリズムと比較して、ジェット横運動量分解能が最大50%向上している。
論文 参考訳(メタデータ) (2023-09-13T08:16:15Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Progress towards an improved particle flow algorithm at CMS with machine
learning [8.3763093941108]
CERN LHCにおけるCMS実験において、粒子流(PF)はイベント再構成において中心的な重要性を持つ。
近年,PF再構成を行うグラフニューラルネットワークであるMLPFアルゴリズムをCMSで探索している。
我々は,生成/シミュレーションレベルの粒子情報を用いて最適化されたアルゴリズムF再構成の実装に向けたCMSの進歩について論じる。
これにより、物理量の観点から検出器の応答を潜在的に改善する道が開ける。
論文 参考訳(メタデータ) (2023-03-30T18:41:28Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Machine Learning for Particle Flow Reconstruction at CMS [7.527568379083754]
CMSのための機械学習に基づく粒子フローアルゴリズムの実装について詳述する。
このアルゴリズムは、温度計クラスタとトラックに基づいて安定粒子を再構成し、グローバルなイベント再構成を提供する。
論文 参考訳(メタデータ) (2022-03-01T10:11:44Z) - A Quantum Graph Neural Network Approach to Particle Track Reconstruction [1.087475836765689]
本稿では,初期単純化ツリーネットワーク(TTN)モデルの低精度化を克服するために,反復的アプローチによる改良モデルを提案する。
我々は、量子コンピューティングの能力を活用して、非常に多くの状態を同時に評価し、それによって、大きなパラメータ空間を効果的に探索することを目指している。
論文 参考訳(メタデータ) (2020-07-14T07:25:24Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。