SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems
- URL: http://arxiv.org/abs/2103.07050v2
- Date: Wed, 5 Jul 2023 04:15:37 GMT
- Title: SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems
- Authors: Chenhao Xu, Jiaqi Ge, Yong Li, Yao Deng, Longxiang Gao, Mengshi Zhang,
Yong Xiang, Xi Zheng
- Abstract summary: Federated learning (FL) enables collaborative training of a shared model on edge devices while maintaining data privacy.
Various personalized approaches have been proposed, but such approaches fail to handle underlying shifts in data distribution.
This paper presents a dynamically optimized personal deep learning scheme based on blockchain and federated learning.
- Score: 15.796325306292134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables collaborative training of a shared model on
edge devices while maintaining data privacy. FL is effective when dealing with
independent and identically distributed (iid) datasets, but struggles with
non-iid datasets. Various personalized approaches have been proposed, but such
approaches fail to handle underlying shifts in data distribution, such as data
distribution skew commonly observed in real-world scenarios (e.g., driver
behavior in smart transportation systems changing across time and location).
Additionally, trust concerns among unacquainted devices and security concerns
with the centralized aggregator pose additional challenges. To address these
challenges, this paper presents a dynamically optimized personal deep learning
scheme based on blockchain and federated learning. Specifically, the innovative
smart contract implemented in the blockchain allows distributed edge devices to
reach a consensus on the optimal weights of personalized models. Experimental
evaluations using multiple models and real-world datasets demonstrate that the
proposed scheme achieves higher accuracy and faster convergence compared to
traditional federated and personalized learning approaches.
Related papers
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized.
We propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy.
arXiv Detail & Related papers (2024-10-31T11:13:47Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Concept drift detection and adaptation for federated and continual
learning [55.41644538483948]
Smart devices can collect vast amounts of data from their environment.
This data is suitable for training machine learning models, which can significantly improve their behavior.
In this work, we present a new method, called Concept-Drift-Aware Federated Averaging.
arXiv Detail & Related papers (2021-05-27T17:01:58Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z) - Evaluation Framework For Large-scale Federated Learning [10.127616622630514]
Federated learning is proposed as a machine learning setting to enable distributed edge devices, such as mobile phones, to collaboratively learn a shared prediction model.
In this paper, we introduce a framework designed for large-scale federated learning which consists of approaches to generating dataset and modular evaluation framework.
arXiv Detail & Related papers (2020-03-03T15:12:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.