Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature
Corpus
- URL: http://arxiv.org/abs/2103.07055v1
- Date: Fri, 12 Mar 2021 03:07:27 GMT
- Title: Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature
Corpus
- Authors: Sangjoon Park, Gwanghyun Kim, Yujin Oh, Joon Beom Seo, Sang Min Lee,
Jin Hwan Kim, Sungjun Moon, Jae-Kwang Lim, Jong Chul Ye
- Abstract summary: Under the global COVID-19 crisis, developing robust diagnosis algorithm for COVID-19 using CXR is hampered by the lack of well-curated COVID-19 data set.
We propose a novel vision Transformer by using the low-level CXR feature corpus that are obtained to extract the abnormal CXR features.
- Score: 25.144248675578286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Under the global COVID-19 crisis, developing robust diagnosis algorithm for
COVID-19 using CXR is hampered by the lack of the well-curated COVID-19 data
set, although CXR data with other disease are abundant. This situation is
suitable for vision transformer architecture that can exploit the abundant
unlabeled data using pre-training. However, the direct use of existing vision
transformer that uses the corpus generated by the ResNet is not optimal for
correct feature embedding. To mitigate this problem, we propose a novel vision
Transformer by using the low-level CXR feature corpus that are obtained to
extract the abnormal CXR features. Specifically, the backbone network is
trained using large public datasets to obtain the abnormal features in routine
diagnosis such as consolidation, glass-grass opacity (GGO), etc. Then, the
embedded features from the backbone network are used as corpus for vision
transformer training. We examine our model on various external test datasets
acquired from totally different institutions to assess the generalization
ability. Our experiments demonstrate that our method achieved the state-of-art
performance and has better generalization capability, which are crucial for a
widespread deployment.
Related papers
- Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical.
We propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales.
arXiv Detail & Related papers (2023-04-25T16:56:12Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Vision Transformer-based Model for Severity Quantification of Lung
Pneumonia Using Chest X-ray Images [11.12596879975844]
We present a Vision Transformer-based neural network model that relies on a small number of trainable parameters to quantify the severity of COVID-19 and other lung diseases.
Our model can provide peak performance in quantifying severity with high generalizability at a relatively low computational cost.
arXiv Detail & Related papers (2023-03-18T12:38:23Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - COVID-Net CXR-2: An Enhanced Deep Convolutional Neural Network Design
for Detection of COVID-19 Cases from Chest X-ray Images [58.35627258364233]
Use of chest X-ray (CXR) imaging as a complimentary screening strategy to RT-PCR testing continues to grow.
We introduce COVID-Net CXR-2, an enhanced deep convolutional neural network design for COVID-19 detection from CXR images.
benchmark dataset composed of 19,203 CXR images from a multinational cohort of 16,656 patients from at least 51 countries.
arXiv Detail & Related papers (2021-05-14T04:29:21Z) - Vision Transformer using Low-level Chest X-ray Feature Corpus for
COVID-19 Diagnosis and Severity Quantification [25.144248675578286]
We propose a novel Vision Transformer that utilizes low-level CXR feature corpus obtained from a backbone network.
The backbone network is first trained with large public datasets to detect common abnormal findings.
Then, the embedded features from the backbone network are used as corpora for a Transformer model for the diagnosis and the severity quantification of COVID-19.
arXiv Detail & Related papers (2021-04-15T04:54:48Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
We demonstrate the first attempt to diagnose COVID-19 using end-to-end deep learning from a crowd-sourced dataset of audio samples.
We introduce a novel modelling strategy using a custom deep neural network to diagnose COVID-19 from a joint breath and cough representation.
arXiv Detail & Related papers (2021-01-07T01:13:00Z) - Triage of Potential COVID-19 Patients from Chest X-ray Images using
Hierarchical Convolutional Networks [5.7179132552879395]
The current COVID-19 pandemic has motivated the researchers to use artificial intelligence techniques for a potential alternative to reverse transcription-polymerase chain reaction (RT-PCR)
The chest X-ray (CXR) is one of the alternatives to achieve fast diagnosis but the unavailability of large-scale annotated data makes the clinical implementation of machine learning-based COVID detection difficult.
In this paper, we propose the use of hierarchical convolutional network (HCN) architecture to naturally augment the data along with diversified features.
arXiv Detail & Related papers (2020-11-01T20:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.