論文の概要: GA for feature selection of EEG heterogeneous data
- arxiv url: http://arxiv.org/abs/2103.07117v1
- Date: Fri, 12 Mar 2021 07:27:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 21:36:36.221318
- Title: GA for feature selection of EEG heterogeneous data
- Title(参考訳): 脳波異種データの特徴選択のためのGA
- Authors: Aurora Saibene (1 and 2) and Francesca Gasparini (1 and 2) ((1)
University of Milano-Bicocca, Department of Informatics, Systems and
Communications, Multi Media Signal Processing Laboratory, (2) University of
Milano-Bicocca, NeuroMI)
- Abstract要約: 本稿では,教師付きあるいは教師なしのアプローチで使用できる特徴選択のための遺伝的アルゴリズム(ga)を提案する。
専門家の知識に頼らず、3つのフィットネス機能を検討します。
提案されたgaは、ここで示した新しいフィットネス機能に基づいて、2つの異なるデータセットがマージされたときにベンチマークを上回っています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electroencephalographic (EEG) signals provide highly informative data on
brain activities and functions. However, their heterogeneity and high
dimensionality may represent an obstacle for their interpretation. The
introduction of a priori knowledge seems the best option to mitigate high
dimensionality problems, but could lose some information and patterns present
in the data, while data heterogeneity remains an open issue that often makes
generalization difficult. In this study, we propose a genetic algorithm (GA)
for feature selection that can be used with a supervised or unsupervised
approach. Our proposal considers three different fitness functions without
relying on expert knowledge. Starting from two publicly available datasets on
cognitive workload and motor movement/imagery, the EEG signals are processed,
normalized and their features computed in the time, frequency and
time-frequency domains. The feature vector selection is performed by applying
our GA proposal and compared with two benchmarking techniques. The results show
that different combinations of our proposal achieve better results in respect
to the benchmark in terms of overall performance and feature reduction.
Moreover, the proposed GA, based on a novel fitness function here presented,
outperforms the benchmark when the two different datasets considered are merged
together, showing the effectiveness of our proposal on heterogeneous data.
- Abstract(参考訳): 脳波信号(EEG)は、脳の活動と機能に関する高い情報を提供する。
しかし、その不均一性と高次元性は解釈の障害となるかもしれない。
先行知識の導入は、高次元問題を緩和する最善の選択肢と思われるが、データに存在する情報やパターンが失われる可能性がある一方で、データの均一性はしばしば一般化を難しくするオープンな問題である。
本研究では,教師なしあるいは教師なしのアプローチで利用可能な特徴選択のための遺伝的アルゴリズム(GA)を提案する。
専門家の知識に頼らず、3つのフィットネス機能を検討します。
認知作業負荷と運動/画像に関する2つの公開データセットから始めて、EEG信号は処理され、正規化され、その特徴が時間、周波数、時間周波数ドメインで計算される。
特徴ベクトルの選択は、GA提案を適用して、2つのベンチマーク手法と比較することで行う。
その結果,提案手法の異なる組み合わせは,全体的な性能と機能削減の観点から,ベンチマークよりも優れた結果が得られることがわかった。
さらに, 提案したGAは, 新たな適合度関数に基づいて, 検討した2つの異なるデータセットをマージした場合のベンチマークを上回り, 異種データに対する提案の有効性を示す。
関連論文リスト
- Two-Stage Hierarchical and Explainable Feature Selection Framework for Dimensionality Reduction in Sleep Staging [0.6216545676226375]
脳波は睡眠研究において重要な役割を果たす。
脳波信号データシーケンスの高次元特性のため、異なる睡眠段階のデータの可視化とクラスタリングが課題となっている。
本稿では,特徴選択アルゴリズムを取り入れた2段階の階層的かつ説明可能な特徴選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:54:53Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Distillation-guided Representation Learning for Unconstrained Gait Recognition [50.0533243584942]
本研究では,屋外シナリオにおける人間認証のためのGADER(GAit Detection and Recognition)フレームワークを提案する。
GADERは、歩行情報を含むフレームのみを使用する新しい歩行認識手法により識別的特徴を構築する。
室内および屋外のデータセットに一貫した改善を示すため,複数の歩行ベースライン(SoTA)について評価を行った。
論文 参考訳(メタデータ) (2023-07-27T01:53:57Z) - On the Validation of Gibbs Algorithms: Training Datasets, Test Datasets
and their Aggregation [70.540936204654]
Gibbsアルゴリズム(GA)のトレーニングデータへの依存を解析的に特徴付ける。
この記述により、異なるデータセットでトレーニングされたGAのトレーニングエラーとテストエラーを含む明示的な表現の開発が可能になる。
論文 参考訳(メタデータ) (2023-06-21T16:51:50Z) - Two Heads are Better than One: A Bio-inspired Method for Improving
Classification on EEG-ET Data [14.086094296850122]
EEGデータの分類は、Brain Computer Interfaces(BCI)とそのアプリケーションのパフォーマンスに不可欠である。
外部ノイズは、その生物学的性質と複雑なデータ収集プロセスのために、しばしば脳波データを妨害する。
脳波データの特徴選択と時間分割を統合した新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:44:39Z) - A GA-like Dynamic Probability Method With Mutual Information for Feature
Selection [1.290382979353427]
相互情報を用いたGADP(GA-like dynamic probability)手法を提案する。
各遺伝子の確率は独立であるため、GADPの染色体変異は従来のGAよりも顕著である。
提案手法の優位性を検証するため,15個のデータセット上で複数の条件下で評価を行った。
論文 参考訳(メタデータ) (2022-10-21T13:30:01Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Explanation-Guided Fairness Testing through Genetic Algorithm [18.642243829461158]
本研究は遺伝的アルゴリズム(GA)を用いた説明誘導フェアネステスト手法ExpGAを提案する。
ExpGAは、解釈可能な方法によって生成された説明結果を用いて、高品質な初期種子を収集する。
次に、GAを用いて、フィットネス値を最適化して識別サンプル候補を検索する。
論文 参考訳(メタデータ) (2022-05-16T02:40:48Z) - An Evolutionary Correlation-aware Feature Selection Method for
Classification Problems [3.2550305883611244]
本稿では,3つの目標を達成するために分布推定アルゴリズムを提案する。
第一に、EDAの拡張として、適合度関数に基づいて競合する各イテレーションにおいて、提案手法は2つの個人しか生成しない。
第二に、各イテレーションにおける個人の機能数を決定するためのガイド技術を提供する。
本論文の主な貢献として,各特徴の重要さだけでなく,特徴間の相互作用についても考察できる。
論文 参考訳(メタデータ) (2021-10-16T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。