論文の概要: A Simple Post-Processing Technique for Improving Readability Assessment
of Texts using Word Mover's Distance
- arxiv url: http://arxiv.org/abs/2103.07277v1
- Date: Fri, 12 Mar 2021 13:51:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 16:33:47.426359
- Title: A Simple Post-Processing Technique for Improving Readability Assessment
of Texts using Word Mover's Distance
- Title(参考訳): Word Mover 距離を用いたテキストの可読性評価のための簡単な後処理手法
- Authors: Joseph Marvin Imperial, Ethel Ong
- Abstract要約: 我々は、ランキングテキストのWord Mover's Distance(WMD)を組み込むことで、自動可読性評価の従来の手法を改善する。
フィリピン, ドイツ語, 英語の3つの多言語データセットに対する実験の結果, ポストプロセッシング技術は, 以前のバニラモデルやランキングベースモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessing the proper difficulty levels of reading materials or texts in
general is the first step towards effective comprehension and learning. In this
study, we improve the conventional methodology of automatic readability
assessment by incorporating the Word Mover's Distance (WMD) of ranked texts as
an additional post-processing technique to further ground the difficulty level
given by a model. Results of our experiments on three multilingual datasets in
Filipino, German, and English show that the post-processing technique
outperforms previous vanilla and ranking-based models using SVM.
- Abstract(参考訳): 資料やテキスト全般の適切な難易度を評価することは、効果的な理解と学習への第一歩である。
本研究では,分類されたテキストの単語移動距離(wmd)を,モデルによる難易度レベルをさらに高めるために追加後処理手法として組み込むことにより,従来の可読性評価手法を改善する。
フィリピン, ドイツ語, 英語の3つの多言語データセットに対する実験の結果, ポストプロセッシング手法は, SVMを用いた以前のバニラモデルやランキングベースモデルよりも優れていることが示された。
関連論文リスト
- A Novel Paradigm Boosting Translation Capabilities of Large Language Models [11.537249547487045]
本論文は,一貫した単言語データを用いた二次事前学習,インターリニアテキストフォーマット文書による継続事前学習,および教師付きファインチューニングのためのソース・ランゲージ・コンスタント・インストラクションの活用という,3つの段階からなる新しいパラダイムを提案する。
Llama2モデルを用いた実験結果,特に中国語-Llama2を用いて,LLMの翻訳能力の向上を実証した。
論文 参考訳(メタデータ) (2024-03-18T02:53:49Z) - Importance-Aware Data Augmentation for Document-Level Neural Machine
Translation [51.74178767827934]
ドキュメントレベルのニューラルマシン翻訳(DocNMT)は、一貫性と結合性の両方を持つ翻訳を生成することを目的としている。
長い入力長とトレーニングデータの可用性が限られているため、DocNMTはデータスパシティーの課題に直面していることが多い。
本稿では,隠れ状態のノルムとトレーニング勾配から推定したトークン重要度情報に基づいてトレーニングデータを拡張するDocNMTのための新しいIADAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-27T09:27:47Z) - Beyond Turing: A Comparative Analysis of Approaches for Detecting Machine-Generated Text [1.919654267936118]
従来の浅層学習,言語モデル(LM)微調整,多言語モデル微調整の評価を行った。
結果は、メソッド間でのパフォーマンスにかなりの違いが示される。
この研究は、堅牢で差別性の高いモデルを作成することを目的とした将来の研究の道を開くものである。
論文 参考訳(メタデータ) (2023-11-21T06:23:38Z) - A deep Natural Language Inference predictor without language-specific
training data [44.26507854087991]
本研究では,言語固有の訓練データセットを使わずに,目的言語における文のペア間の推論関係(NLI)に対処するためのNLP手法を提案する。
我々は、同じトレーニング済みモデルの2つのインスタンスとともに、手動で翻訳される汎用翻訳データセットを利用する。
このモデルは、機械翻訳Stanford NLIテストデータセット、機械翻訳Multi-Genre NLIテストデータセット、手動翻訳RTE3-ITAテストデータセットで評価されている。
論文 参考訳(メタデータ) (2023-09-06T10:20:59Z) - Knowledge-Prompted Estimator: A Novel Approach to Explainable Machine
Translation Assessment [20.63045120292095]
言語間機械翻訳(MT)の品質評価は,翻訳性能を評価する上で重要な役割を担っている。
GEMBAはLarge Language Models (LLMs) に基づく最初のMT品質評価尺度であり、システムレベルのMT品質評価において最先端(SOTA)を達成するために一段階のプロンプトを用いる。
本稿では,KPE(Knowledge-Prompted Estor)という,難易度,トークンレベルの類似度,文レベルの類似度を含む3つのワンステッププロンプト技術を組み合わせたCoTプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T01:18:32Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - Phrase-level Adversarial Example Generation for Neural Machine
Translation [75.01476479100569]
本稿では,句レベルの逆例生成(PAEG)手法を提案し,モデルの堅牢性を高める。
我々は,LDC中英語,IWSLT14ドイツ語-英語,WMT14英語-ドイツ語タスクの3つのベンチマークで検証を行った。
論文 参考訳(メタデータ) (2022-01-06T11:00:49Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
平行コーパスの欠如により、テキストスタイルの転送タスクの教師付きモデルを直接訓練することは不可能である。
我々は、当初、微調整されたニューラルマシン翻訳モデルに使用されていた意味的類似度指標を活用している。
我々のモデルは、強いベースラインに対する自動評価と人的評価の両方において大きな利益をもたらす。
論文 参考訳(メタデータ) (2020-10-24T04:30:02Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。