論文の概要: Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models
- arxiv url: http://arxiv.org/abs/2103.07350v1
- Date: Fri, 12 Mar 2021 15:29:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 13:30:25.476488
- Title: Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models
- Title(参考訳): 自己機能規則化:教師モデルのない自己機能蒸留
- Authors: Wenxuan Fan, Zhenyan Hou
- Abstract要約: 浅層層における機能学習を監督するために深層の特徴を用いるセルフフィーチャー正規化(sfr)を提案する。
まず,局所的な特徴にマッチする一般化l2損失と,チャネル次元においてより集中的に蒸留する多対一の手法を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation is the process of transferring the knowledge from a
large model to a small model. In this process, the small model learns the
generalization ability of the large model and retains the performance close to
that of the large model. Knowledge distillation provides a training means to
migrate the knowledge of models, facilitating model deployment and speeding up
inference. However, previous distillation methods require pre-trained teacher
models, which still bring computational and storage overheads. In this paper, a
novel general training framework called Self-Feature Regularization~(SFR) is
proposed, which uses features in the deep layers to supervise feature learning
in the shallow layers, retains more semantic information. Specifically, we
firstly use EMD-l2 loss to match local features and a many-to-one approach to
distill features more intensively in the channel dimension. Then dynamic label
smoothing is used in the output layer to achieve better performance.
Experiments further show the effectiveness of our proposed framework.
- Abstract(参考訳): 知識蒸留(英: knowledge distillation)は、知識を大きなモデルから小さなモデルに移す過程である。
この過程において、小モデルは、大模型の一般化能力を学び、大模型のそれに近い性能を維持する。
知識蒸留は、モデルの知識を移行し、モデルの展開を促進し、推論を高速化する訓練手段を提供する。
しかし、以前の蒸留法では、事前に訓練された教師モデルが必要です。
本稿では,深層の特徴を用いて浅層における特徴学習を監督し,より意味的な情報を保持する,セルフ・フィーチャー・レギュライゼーション(sfr)と呼ばれる新しい汎用学習フレームワークを提案する。
具体的には,まずEMD-l2損失を局所的な特徴に合わせるために利用し,チャネル次元においてより集中的に特徴を蒸留するための多対一のアプローチを提案する。
次に、出力層で動的ラベル平滑化を用い、よりよい性能を得る。
さらに,提案手法の有効性を示す実験を行った。
関連論文リスト
- Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
本稿では,事前学習モデルを用いた新しい機械学習手法を提案する。
LoRAを利用して、モデルの中間機能を事前訓練された特徴と残像に分解する。
本手法は,保持集合上のゼロ残差を学習し,未学習集合上でシフト残差を学習することを目的としている。
論文 参考訳(メタデータ) (2024-11-13T08:56:35Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Efficient Knowledge Deletion from Trained Models through Layer-wise
Partial Machine Unlearning [2.3496568239538083]
本稿では,機械学習アルゴリズムの新たなクラスを紹介する。
第1の方法は、アンネシアック・アンラーニングであり、アンネシアック・アンラーニングとレイヤーワイズ・プルーニングの統合である。
第2の方法は、階層的な部分更新をラベルフリップと最適化に基づくアンラーニングに同化する。
論文 参考訳(メタデータ) (2024-03-12T12:49:47Z) - Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
本稿では,知識蒸留と半教師付き学習手法を組み合わせた統合的アプローチを提案する。
このハイブリッドアプローチは、大規模モデルのロバストな機能を活用して、大規模な未ラベルデータを効果的に活用する。
半教師付き学習に基づく知識蒸留(SSLKD)アプローチは,学生モデルの性能向上を示す。
論文 参考訳(メタデータ) (2024-02-07T22:50:47Z) - Generative Model-based Feature Knowledge Distillation for Action
Recognition [11.31068233536815]
本稿では,軽量学生モデルの学習のための生成モデルを用いた,革新的な知識蒸留フレームワークについて紹介する。
提案手法の有効性は,多種多様な人気データセットに対する総合的な実験によって実証される。
論文 参考訳(メタデータ) (2023-12-14T03:55:29Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Prototype-guided Cross-task Knowledge Distillation for Large-scale
Models [103.04711721343278]
クロスタスクの知識蒸留は、競争力のあるパフォーマンスを得るために小さな学生モデルを訓練するのに役立ちます。
本稿では,大規模教師ネットワークの内在的ローカルレベルのオブジェクト知識を様々なタスクシナリオに転送するための,プロトタイプ誘導型クロスタスク知識蒸留(ProC-KD)アプローチを提案する。
論文 参考訳(メタデータ) (2022-12-26T15:00:42Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
本研究では,Mixture-of-Experts構造を用いてモデルキャパシティと推論速度を向上させるMoEBERTを提案する。
自然言語理解と質問応答タスクにおけるMoEBERTの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2022-04-15T23:19:37Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
知識蒸留はモデル圧縮の一般的な方法です。
現在の方法は、蒸留全体の教師モデルに固定重量を割り当てます。
既存のメソッドのほとんどは、すべての教師モデルに等しい重みを割り当てます。
本論文では,学習例の複雑性や生徒モデル能力の違いから,教師モデルとの違いを学習することで,生徒モデルの蒸留性能の向上が期待できることを考察する。
論文 参考訳(メタデータ) (2020-12-11T08:56:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。