論文の概要: Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models
- arxiv url: http://arxiv.org/abs/2412.19449v1
- Date: Fri, 27 Dec 2024 04:37:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:05.941234
- Title: Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models
- Title(参考訳): 大規模言語モデルの効率的な圧縮のための特徴アライメントに基づく知識蒸留
- Authors: Shuo Wang, Chihang Wang, Jia Gao, Zhen Qi, Hongye Zheng, Xiaoxuan Liao,
- Abstract要約: 本研究では,大規模言語モデルと特徴アライメントに基づく知識蒸留アルゴリズムを提案する。
提案モデルは, パープレキシティ, BLEU, ROUGE, CER などの評価指標を用いて, 最先端の GPT-4 モデルに非常に近い性能を示す。
- 参考スコア(独自算出の注目度): 4.737806982257592
- License:
- Abstract: This study proposes a knowledge distillation algorithm based on large language models and feature alignment, aiming to effectively transfer the knowledge of large pre-trained models into lightweight student models, thereby reducing computational costs while maintaining high model performance. Different from the traditional soft label distillation method, this method introduces a multi-layer feature alignment strategy to deeply align the intermediate features and attention mechanisms of the teacher model and the student model, maximally retaining the semantic expression ability and context modeling ability of the teacher model. In terms of method design, a multi-task loss function is constructed, including feature matching loss, attention alignment loss, and output distribution matching loss, to ensure multi-level information transfer through joint optimization. The experiments were comprehensively evaluated on the GLUE data set and various natural language processing tasks. The results show that the proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER. At the same time, it far exceeds baseline models such as DeBERTa, XLNet, and GPT-3, showing significant performance improvements and computing efficiency advantages. Research results show that the feature alignment distillation strategy is an effective model compression method that can significantly reduce computational overhead and storage requirements while maintaining model capabilities. Future research can be further expanded in the directions of self-supervised learning, cross-modal feature alignment, and multi-task transfer learning to provide more flexible and efficient solutions for the deployment and optimization of deep learning models.
- Abstract(参考訳): 本研究では,大規模言語モデルと機能アライメントに基づく知識蒸留アルゴリズムを提案し,大規模事前学習モデルの知識を軽量な学生モデルに効果的に伝達することを目的として,高いモデル性能を維持しながら計算コストを削減することを目的とした。
従来のソフトラベル蒸留法とは違って,教師モデルと学生モデルの中間的特徴と注意機構を深く整合させる多層機能アライメント戦略を導入し,教師モデルのセマンティック表現能力とコンテキストモデリング能力を最大限に維持する。
手法設計においては、特徴整合損失、アテンションアライメント損失、出力分布整合損失を含むマルチタスク損失関数を構築し、共同最適化による多レベル情報伝達を保証する。
実験はGLUEデータセットと各種自然言語処理タスクを総合的に評価した。
以上の結果から,提案モデルは,難易度,BLEU,ROUGE,CERなどの評価指標の観点から,最先端のGPT-4モデルに非常に近い性能を示した。
同時に、DeBERTa、XLNet、GPT-3といったベースラインモデルを超え、大幅な性能向上と計算効率の優位性を示した。
提案手法は, モデル性能を維持しつつ, 計算オーバーヘッドと貯蔵要求を大幅に低減できる有効モデル圧縮法であることを示す。
将来の研究は、自己教師付き学習、クロスモーダル機能アライメント、マルチタスクトランスファー学習の方向にさらに拡張され、ディープラーニングモデルのデプロイと最適化のためのより柔軟で効率的なソリューションが提供される。
関連論文リスト
- TAID: Temporally Adaptive Interpolated Distillation for Efficient Knowledge Transfer in Language Models [6.8298782282181865]
本稿では,新規な知識蒸留法である$textitTemporally Adaptive Interpolated Distillation (TAID)$を紹介する。
TAIDは,各種モデルサイズおよびアーキテクチャに対して,命令チューニングと事前学習のシナリオにおいて優れた性能を示す。
これらの結果は、TAIDが高性能で効率的なモデルの作成に有効であることを示し、よりアクセスしやすいAI技術の開発を推進している。
論文 参考訳(メタデータ) (2025-01-28T13:31:18Z) - Streamlined Federated Unlearning: Unite as One to Be Highly Efficient [12.467630082668254]
「忘れられる権利」法や規制は、連邦学習(FL)に新たなプライバシー要件を課している。
本研究では,モデルの性能を劣化することなく保持データに保存しながら,対象データの影響を効果的に除去することを目的とした,合理化アンラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-11-28T12:52:48Z) - Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation [10.48108719012248]
我々は、より大規模な教師モデルを模倣するために、コンパクトな学生モデルを訓練する知識蒸留(KD)に焦点を当てる。
これまでの作業の多くとは対照的に、トレーニング中の学生モデルのパラメータをスケールアップする。
論文 参考訳(メタデータ) (2024-11-10T12:40:59Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Efficient Point Cloud Classification via Offline Distillation Framework and Negative-Weight Self-Distillation Technique [46.266960248570086]
本稿では,教師モデルと生徒モデルの両方の同時ロードを回避する,革新的なオフライン記録戦略を提案する。
このアプローチは教師モデルに多数の追加サンプルを投入し、データ拡張パラメータと対応するロジット出力の両方を記録する。
実験により, 提案した蒸留方式により, 学生モデルが最先端モデルに匹敵する性能を達成できることが実証された。
論文 参考訳(メタデータ) (2024-09-03T16:12:12Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC)は、与えられたテキストパスを理解し、それに基づいて質問に答える機能を明らかにする。
MRCの既存の研究は、Exact Matchのようなメトリクスによって評価されたパフォーマンスを改善するために、大規模なモデルとコーパスに大きく依存している。
モデル機能とデータ特性の深い理解は、適切なトレーニングデータでモデルをフィードするのに役立ちます。
論文 参考訳(メタデータ) (2022-03-05T14:15:59Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
浅層層における機能学習を監督するために深層の特徴を用いるセルフフィーチャー正規化(sfr)を提案する。
まず,局所的な特徴にマッチする一般化l2損失と,チャネル次元においてより集中的に蒸留する多対一の手法を用いる。
論文 参考訳(メタデータ) (2021-03-12T15:29:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。