Mapping quantum chemical dynamics problems onto spin-lattice simulators
- URL: http://arxiv.org/abs/2103.07420v2
- Date: Tue, 8 Jun 2021 16:29:33 GMT
- Title: Mapping quantum chemical dynamics problems onto spin-lattice simulators
- Authors: Debadrita Saha and Srinivasan S. Iyengar and Philip Richerme and
Jeremy M. Smith and Amr Sabry
- Abstract summary: We provide a framework which allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators.
Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics.
- Score: 0.5249805590164901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate computational determination of chemical, materials, biological,
and atmospheric properties has critical impact on a wide range of health and
environmental problems, but is deeply limited by the computational scaling of
quantum-mechanical methods. The complexity of quantum-chemical studies arises
from the steep algebraic scaling of electron correlation methods, and the
exponential scaling in studying nuclear dynamics and molecular flexibility. To
date, efforts to apply quantum hardware to such quantum chemistry problems have
focused primarily on electron correlation. Here, we provide a framework which
allows for the solution of quantum chemical nuclear dynamics by mapping these
to quantum spin-lattice simulators. Using the example case of a short-strong
hydrogen bonded system, we construct the Hamiltonian for the nuclear degrees of
freedom on a single Born-Oppenheimer surface and show how it can be transformed
to a generalized Ising model Hamiltonian. We then demonstrate a method to
determine the local fields and spin-spin couplings needed to identically match
the molecular and spin-lattice Hamiltonians. We describe a protocol to
determine the on-site and inter-site coupling parameters of this Ising
Hamiltonian from the Born-Oppenheimer potential and nuclear kinetic energy
operator. Our approach represents a paradigm shift in the methods used to study
quantum nuclear dynamics, opening the possibility to solve both electronic
structure and nuclear dynamics problems using quantum computing systems.
Related papers
- Simulating Chemistry with Fermionic Optical Superlattices [2.7521403951088934]
We show that quantum number preserving Ans"atze for variational optimization in quantum chemistry find an elegant mapping to ultracold fermions in optical superlattices.
Trial ground states for arbitrary molecular Hamiltonians can be prepared and their molecular energies measured in the lattice.
arXiv Detail & Related papers (2024-09-09T14:35:55Z) - Ab initio extended Hubbard model of short polyenes for efficient quantum computing [0.0]
We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method.
The ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.
arXiv Detail & Related papers (2024-04-02T04:13:09Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra [0.37187295985559027]
We introduce a framework for solving hydrogen-bond systems and more generic chemical dynamics problems using quantum logic.
We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer.
Our approach introduces a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules.
arXiv Detail & Related papers (2022-04-18T21:42:54Z) - Quantum computation of molecular structure using data from
challenging-to-classically-simulate nuclear magnetic resonance experiments [0.0]
We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-resolved measurements of spin-spinors.
We demonstrate the ability to directly estimate the Jacobian and Hessian of the corresponding learning problem on a quantum computer.
arXiv Detail & Related papers (2021-09-05T20:20:49Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.