Ab initio extended Hubbard model of short polyenes for efficient quantum computing
- URL: http://arxiv.org/abs/2404.01623v1
- Date: Tue, 2 Apr 2024 04:13:09 GMT
- Title: Ab initio extended Hubbard model of short polyenes for efficient quantum computing
- Authors: Yuichiro Yoshida, Nayuta Takemori, Wataru Mizukami,
- Abstract summary: We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method.
The ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method, which was originally formulated for periodic materials, towards efficient quantum computing of molecular electronic structure calculations. By utilizing this method, the first-principles Hamiltonian of chemical systems can be coarse-grained by eliminating the electronic degrees of freedom in higher energy space and reducing the number of terms of electron repulsion integral from $\mathcal{O}(N^4)$ to $\mathcal{O}(N^2)$. Our approach is validated numerically on the vertical excitation energies and excitation characters of ethylene, butadiene, and hexatriene. The dynamical electron correlation is incorporated within the framework of the constrained random phase approximation in advance of quantum computations, and the constructed models capture the trend of experimental and high-level quantum chemical calculation results. As expected, the $L^1$-norm of the fermion-to-qubit mapped model Hamiltonians is significantly lower than that of conventional ab initio Hamiltonians, suggesting improved scalability of quantum computing. Those numerical outcomes and the results of the simulation of excited-state sampling demonstrate that the ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.
Related papers
- Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules [0.0]
We present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework.
We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms.
arXiv Detail & Related papers (2024-09-06T17:42:34Z) - Accurate harmonic vibrational frequencies for diatomic molecules via
quantum computing [0.0]
We propose a promising qubit-efficient quantum computational approach to calculate the harmonic vibrational frequencies of a set of neutral closed-shell diatomic molecules.
We show that the variational quantum circuit with the chemistry-inspired UCCSD ansatz can achieve the same accuracy as the exact diagonalization method.
arXiv Detail & Related papers (2023-12-19T16:44:49Z) - On The Study Of Partial Qubit Hamiltonian For Efficient Molecular
Simulation Using Variational Quantum Eigensolvers [0.0]
We present a new approach for extracting information from the partial qubit Hamiltonian of simple molecules to design more efficient variational quantum eigensolvers.
The results of this study have the potential to demonstrate the potential advancement in the field of quantum computing and its implementation in quantum chemistry.
arXiv Detail & Related papers (2023-08-24T03:25:05Z) - Nonadiabatic nuclear-electron dynamics: a quantum computing approach [0.0]
We propose a quantum algorithm for the simulation of the time-evolution of molecular systems in the second quantization framework.
We show how the entanglement between the electronic and nuclear degrees of freedom can persist over long times if electrons are not adiabatically following the nuclear displacement.
The proposed quantum algorithm may become a valid candidate for the study of electron-nuclear quantum phenomena when sufficiently powerful quantum computers become available.
arXiv Detail & Related papers (2023-06-02T16:44:22Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Mapping quantum chemical dynamics problems onto spin-lattice simulators [0.5249805590164901]
We provide a framework which allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators.
Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics.
arXiv Detail & Related papers (2021-03-12T17:32:52Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.