Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra
- URL: http://arxiv.org/abs/2204.08571v2
- Date: Mon, 20 Mar 2023 13:46:22 GMT
- Title: Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra
- Authors: Philip Richerme, Melissa C. Revelle, Debadrita Saha, Miguel Angel
Lopez-Ruiz, Anurag Dwivedi, Sam A. Norrell, Christopher G. Yale, Daniel
Lobser, Ashlyn D. Burch, Susan M. Clark, Jeremy M. Smith, Amr Sabry,
Srinivasan S. Iyengar
- Abstract summary: We introduce a framework for solving hydrogen-bond systems and more generic chemical dynamics problems using quantum logic.
We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer.
Our approach introduces a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules.
- Score: 0.37187295985559027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calculating the observable properties of chemical systems is often
classically intractable and is widely viewed as a promising application of
quantum information processing. Yet one of the most common and important
chemical systems in nature - the hydrogen bond - has remained a challenge to
study using quantum hardware on account of its anharmonic potential energy
landscape. Here, we introduce a framework for solving hydrogen-bond systems and
more generic chemical dynamics problems using quantum logic. We experimentally
demonstrate a proof-of-principle instance of our method using the QSCOUT
ion-trap quantum computer, in which we experimentally drive the ion-trap system
to emulate the quantum wavepacket of the shared-proton within a hydrogen bond.
Following the experimental creation of the shared-proton wavepacket, we then
extract measurement observables such as its time-dependent spatial projection
and its characteristic vibrational frequencies to spectroscopic accuracy (3.3
cm$^{-1}$ wavenumbers, corresponding to > 99.9% fidelity). Our approach
introduces a new paradigm for studying the quantum chemical dynamics and
vibrational spectra of molecules, and when combined with existing algorithms
for electronic structure, opens the possibility to describe the complete
behavior of complex molecular systems with unprecedented accuracy.
Related papers
- Simulating Chemistry with Fermionic Optical Superlattices [2.7521403951088934]
We show that quantum number preserving Ans"atze for variational optimization in quantum chemistry find an elegant mapping to ultracold fermions in optical superlattices.
Trial ground states for arbitrary molecular Hamiltonians can be prepared and their molecular energies measured in the lattice.
arXiv Detail & Related papers (2024-09-09T14:35:55Z) - Quantum information theory on sparse wavefunctions and applications for Quantum Chemistry [0.0]
SparQ is designed to efficiently compute fundamental quantum information theory observables on post-Hartree-Fock wavefunctions sparse in their definition space.
The effectiveness of SparQ is validated by analyzing the mutual information matrices of wavefunctions for the water molecule and the total entropy of $sim 102$ qubits describing the benzene molecule.
arXiv Detail & Related papers (2024-08-05T16:54:20Z) - Quantum nuclear dynamics on a distributed set of ion-trap quantum computing systems [0.0]
We use an IonQ 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton.
We also provide the first application of distributed quantum computing for chemical dynamics problems.
arXiv Detail & Related papers (2024-06-07T18:27:50Z) - Quantum Information reveals that orbital-wise correlation is essentially classical in Natural Orbitals [0.0]
We investigate the nature of the orbital-wise electron correlations in wavefunctions of realistic cases classical or quantum.
Our analysis reveals a notable distinction between classical and quantum mutual information in molecular systems.
This finding suggests that wavefunction correlations, when viewed through the appropriate orbital basis, are predominantly classical.
arXiv Detail & Related papers (2024-04-22T11:26:56Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Perspective: Numerically "exact" approach to open quantum dynamics: The
hierarchical equations of motion (HEOM) [0.0]
An open quantum system refers to a system that is further coupled to a bath system.
The hierarchical equations of motion (HEOM) can describe numerically "exact" dynamics of a reduced system.
arXiv Detail & Related papers (2020-06-09T21:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.