論文の概要: 3D Semantic Scene Completion: a Survey
- arxiv url: http://arxiv.org/abs/2103.07466v1
- Date: Fri, 12 Mar 2021 18:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 13:18:14.091707
- Title: 3D Semantic Scene Completion: a Survey
- Title(参考訳): 3Dセマンティックシーンの完成:調査
- Authors: Luis Roldao, Raoul de Charette, Anne Verroust-Blondet
- Abstract要約: SSCは、部分的なスパース入力を想定して、シーンの完全なジオメトリとセマンティクスを共同で推定することを目指している。
本稿では,SSC文献を手法とデータセットの両方でクリティカルに分析する手法を特定し,比較し,分析する。
- 参考スコア(独自算出の注目度): 9.268780170422371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic Scene Completion (SSC) aims to jointly estimate the complete
geometry and semantics of a scene, assuming partial sparse input. In the last
years following the multiplication of large-scale 3D datasets, SSC has gained
significant momentum in the research community because it holds unresolved
challenges. Specifically, SSC lies in the ambiguous completion of large
unobserved areas and the weak supervision signal of the ground truth. This led
to a substantially increasing number of papers on the matter. This survey aims
to identify, compare and analyze the techniques providing a critical analysis
of the SSC literature on both methods and datasets. Throughout the paper, we
provide an in-depth analysis of the existing works covering all choices made by
the authors while highlighting the remaining avenues of research. SSC
performance of the SoA on the most popular datasets is also evaluated and
analyzed.
- Abstract(参考訳): Semantic Scene Completion(SSC)は、部分的なスパース入力を想定して、シーンの完全なジオメトリとセマンティクスを共同で推定することを目的とする。
大規模な3Dデータセットの乗算後、SSCは未解決の課題を抱えているため、研究コミュニティで大きな勢いを得ています。
具体的には、SSCは大きな未観測領域の曖昧な完備化と、地上の真実の弱い監視信号に関係している。
これにより、この問題に関する論文が大幅に増えた。
本調査は,SSC文献を手法とデータセットの両方で重要な分析を行う技術を特定し,比較し,分析することを目的としている。
本論文を通じて,著者が行ったすべての選択を網羅し,研究の残りの道筋を強調しながら,既存の作品の詳細な分析を行う。
最も人気のあるデータセット上のSoAのSSCパフォーマンスも評価され、分析されます。
関連論文リスト
- Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
我々は、比較的未探索なタスク設定、長い尾のセマンティックセマンティックセグメンテーション(LTSS)に焦点を当てる。
本稿では,セマンティックセグメンテーション手法と長鎖解の性能を示すために,二値評価システムを提案し,LTSSベンチマークを構築した。
また,1対1のマッチングによって過剰な圧縮問題を解決する周波数ベースのマーカであるLTSSを改善するトランスフォーマーベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:57:56Z) - A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing
Objects in 3D Scenes [80.20670062509723]
3Dシークエンスキャプションは、3Dシーンの詳細な説明を作成することを目的とした、視覚言語によるブリッジングタスクである。
2次元の視覚的キャプションと比較して、現実世界の表現が密接なため、大きな可能性と課題が提示される。
既存手法の人気と成功にもかかわらず、この分野の進歩を要約した総合的な調査は乏しい。
論文 参考訳(メタデータ) (2024-03-12T10:04:08Z) - Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects [84.36935309169567]
ゼロショット学習(ZSL)における微粒化解析の最近の進歩を概観する。
まず、各カテゴリの詳細な分析を行い、既存の手法と手法の分類について述べる。
次に、ベンチマークを要約し、公開データセット、モデル、実装、およびライブラリとしての詳細について説明する。
論文 参考訳(メタデータ) (2024-01-31T11:51:24Z) - RethinkingTMSC: An Empirical Study for Target-Oriented Multimodal
Sentiment Classification [70.9087014537896]
目的指向型マルチモーダル感性分類(TMSC)は,学者の間でも注目されている。
この問題の原因を明らかにするために,データセットの広範な実験的評価と詳細な分析を行う。
論文 参考訳(メタデータ) (2023-10-14T14:52:37Z) - SSC-RS: Elevate LiDAR Semantic Scene Completion with Representation
Separation and BEV Fusion [17.459062337718677]
本稿では,表現分離とBEV融合の観点から,屋外SSCを解くことを提案する。
本稿では,SSC-RSと命名されたネットワークについて述べる。このネットワークは,意味的および幾何学的表現の学習手順を明示的に切り離すために,深い監督を伴う分岐を用いている。
提案したAdaptive Representation Fusion (ARF) モジュールを備えたBEV融合ネットワークを用いて, マルチスケール特徴を効果的かつ効率的に集約する。
論文 参考訳(メタデータ) (2023-06-27T10:02:45Z) - SSCBench: A Large-Scale 3D Semantic Scene Completion Benchmark for Autonomous Driving [87.8761593366609]
SSCBenchは、広く使用されている自動車データセットのシーンを統合するベンチマークである。
我々は、単眼、三眼、クラウド入力を用いて、性能ギャップを評価するモデルをベンチマークする。
クロスドメインの一般化テストを簡単にするために、さまざまなデータセットにまたがったセマンティックラベルを統一しています。
論文 参考訳(メタデータ) (2023-06-15T09:56:33Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - An Empirical Survey on Long Document Summarization: Datasets, Models and
Metrics [33.655334920298856]
本稿では,長期文書要約研究の概要について概説する。
我々は、現在の研究の進展に対する視点を広げるために、実証分析を行う。
論文 参考訳(メタデータ) (2022-07-03T02:57:22Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z) - Are We Hungry for 3D LiDAR Data for Semantic Segmentation? A Survey and
Experimental Study [5.6780397318769245]
3Dセマンティックセグメンテーションは、ロボットおよび自律運転アプリケーションの基本課題である。
最近の研究はディープラーニング技術の利用に重点を置いているが、細かな注釈付き3DLiDARデータセットの開発は非常に労働集約的である。
不十分なデータセットによって引き起こされるパフォーマンスの制限は、データ飢餓問題と呼ばれる。
論文 参考訳(メタデータ) (2020-06-08T01:20:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。