Causal Markov Boundaries
- URL: http://arxiv.org/abs/2103.07560v1
- Date: Fri, 12 Mar 2021 22:49:10 GMT
- Title: Causal Markov Boundaries
- Authors: Sofia Triantafillou and Fattaneh Jabbari and Greg Cooper
- Abstract summary: We show how we can use observational data to improve feature selection and effect estimation.
Our paper extends the notion of Markov boundary to treatment-outcome pairs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection is an important problem in machine learning, which aims to
select variables that lead to an optimal predictive model. In this paper, we
focus on feature selection for post-intervention outcome prediction from
pre-intervention variables. We are motivated by healthcare settings, where the
goal is often to select the treatment that will maximize a specific patient's
outcome; however, we often do not have sufficient randomized control trial data
to identify well the conditional treatment effect. We show how we can use
observational data to improve feature selection and effect estimation in two
cases: (a) using observational data when we know the causal graph, and (b) when
we do not know the causal graph but have observational and limited experimental
data. Our paper extends the notion of Markov boundary to treatment-outcome
pairs. We provide theoretical guarantees for the methods we introduce. In
simulated data, we show that combining observational and experimental data
improves feature selection and effect estimation.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences.
We show that selection structure is identifiable without any parametric assumptions or interventional experiments.
We also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies.
arXiv Detail & Related papers (2024-06-29T20:56:34Z) - Causal thinking for decision making on Electronic Health Records: why
and how [0.0]
Causal thinking is needed for data-driven decisions.
We present a step-by-step framework to help build valid decision making from real-life patient records.
arXiv Detail & Related papers (2023-08-03T08:17:00Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Treatment Outcome Prediction for Intracerebral Hemorrhage via Generative
Prognostic Model with Imaging and Tabular Data [18.87414111429906]
Intracerebral hemorrhage is the second most common and deadliest form of stroke.
Despite medical advances, predicting treat ment outcomes for ICH remains a challenge.
Model is trained on observational data collected from non-randomized controlled trials.
arXiv Detail & Related papers (2023-07-24T14:57:40Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
Estimating heterogeneous treatment effects is an important problem across many domains.
Currently, most existing works rely exclusively on observational data.
We propose to estimate heterogeneous treatment effects by combining large amounts of observational data and small amounts of randomized data.
arXiv Detail & Related papers (2022-02-25T18:59:54Z) - To Impute or not to Impute? -- Missing Data in Treatment Effect
Estimation [84.76186111434818]
We identify a new missingness mechanism, which we term mixed confounded missingness (MCM), where some missingness determines treatment selection and other missingness is determined by treatment selection.
We show that naively imputing all data leads to poor performing treatment effects models, as the act of imputation effectively removes information necessary to provide unbiased estimates.
Our solution is selective imputation, where we use insights from MCM to inform precisely which variables should be imputed and which should not.
arXiv Detail & Related papers (2022-02-04T12:08:31Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine.
Time-to-event data is rarely used for treatment optimization.
We suggest an approach named BITES, which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network.
arXiv Detail & Related papers (2022-01-05T10:39:31Z) - Double machine learning for sample selection models [0.12891210250935145]
This paper considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition.
We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias.
arXiv Detail & Related papers (2020-11-30T19:40:21Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.