Online Learning of Objects through Curiosity-Driven Active Learning
- URL: http://arxiv.org/abs/2103.07758v1
- Date: Sat, 13 Mar 2021 17:42:09 GMT
- Title: Online Learning of Objects through Curiosity-Driven Active Learning
- Authors: Ali Ayub, Alan R. Wagner
- Abstract summary: Children learn continually by asking questions about the concepts they are most curious about.
With robots becoming an integral part of our society, they must also learn unknown concepts continually by asking humans questions.
This paper presents a novel framework for curiosity-driven online learning of objects.
- Score: 9.89901717499058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Children learn continually by asking questions about the concepts they are
most curious about. With robots becoming an integral part of our society, they
must also learn unknown concepts continually by asking humans questions. This
paper presents a novel framework for curiosity-driven online learning of
objects. The paper utilizes a recent state-of-the-art approach for continual
learning and adapts it for online learning of objects. The paper further
develops a self-supervised technique to find most of the uncertain objects in
an environment by utilizing an internal representation of previously learned
classes. We test our approach on a benchmark dataset for continual learning on
robots. Our results show that our curiosity-driven online learning approach
beats random sampling and softmax-based uncertainty sampling in terms of
classification accuracy and the total number of classes learned.
Related papers
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
arXiv Detail & Related papers (2024-08-21T11:32:09Z) - Continual Learning: Applications and the Road Forward [119.03464063873407]
Continual learning aims to allow machine learning models to continuously learn on new data, by accumulating knowledge without forgetting what was learned in the past.
This work is the result of the many discussions the authors had at the Dagstuhl seminar on Deep Continual Learning, in March 2023.
arXiv Detail & Related papers (2023-11-20T16:40:29Z) - How Do Human Users Teach a Continual Learning Robot in Repeated
Interactions? [7.193217430660011]
We take a human-centered approach to continual learning, to understand how humans teach continual learning robots over the long term.
We conducted an in-person study with 40 participants that interacted with a continual learning robot in 200 sessions.
An extensive qualitative and quantitative analysis of the data collected in the study shows that there is significant variation among the teaching styles of individual users.
arXiv Detail & Related papers (2023-06-30T20:29:48Z) - Learning by Asking Questions for Knowledge-based Novel Object
Recognition [64.55573343404572]
In real-world object recognition, there are numerous object classes to be recognized. Conventional image recognition based on supervised learning can only recognize object classes that exist in the training data, and thus has limited applicability in the real world.
Inspired by this, we study a framework for acquiring external knowledge through question generation that would help the model instantly recognize novel objects.
Our pipeline consists of two components: the Object-based object recognition, and the Question Generator, which generates knowledge-aware questions to acquire novel knowledge.
arXiv Detail & Related papers (2022-10-12T02:51:58Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
We propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset.
We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects.
arXiv Detail & Related papers (2021-04-15T20:10:11Z) - Continual Learning: Tackling Catastrophic Forgetting in Deep Neural
Networks with Replay Processes [0.0]
Continual algorithms are designed to accumulate and improve knowledge in a curriculum of learning-experiences without forgetting.
Generative Replay consists of regenerating past learning experiences with a generative model to remember them.
We show that they are very promising methods for continual learning.
arXiv Detail & Related papers (2020-07-01T13:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.