論文の概要: Pretraining Neural Architecture Search Controllers with Locality-based
Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2103.08157v1
- Date: Mon, 15 Mar 2021 06:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 14:02:32.035331
- Title: Pretraining Neural Architecture Search Controllers with Locality-based
Self-Supervised Learning
- Title(参考訳): 局所性に基づく自己監督学習によるニューラルネットワーク探索コントローラの事前学習
- Authors: Kwanghee Choi, Minyoung Choe, Hyelee Lee
- Abstract要約: コントローラベースのNASに適用可能なプリトレーニング方式を提案する。
本手法は局所性に基づく自己教師付き分類タスクであり,ネットワークアーキテクチャの構造的類似性を活用し,優れたアーキテクチャ表現を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural architecture search (NAS) has fostered various fields of machine
learning. Despite its prominent dedications, many have criticized the intrinsic
limitations of high computational cost. We aim to ameliorate this by proposing
a pretraining scheme that can be generally applied to controller-based NAS. Our
method, locality-based self-supervised classification task, leverages the
structural similarity of network architectures to obtain good architecture
representations. We incorporate our method into neural architecture
optimization (NAO) to analyze the pretrained embeddings and its effectiveness
and highlight that adding metric learning loss brings a favorable impact on
NAS. Our code is available at
\url{https://github.com/Multi-Objective-NAS/self-supervised-nas}.
- Abstract(参考訳): neural architecture search(nas)は、機械学習のさまざまな分野を育んでいる。
その顕著な献身にもかかわらず、多くは高い計算コストの本質的な制限を批判してきた。
コントローラベースのNASに一般的に適用できるプリトレーニングスキームを提案することで、これを改善することを目指しています。
本手法は局所性に基づく自己教師付き分類タスクであり,ネットワークアーキテクチャの構造的類似性を活用し,優れたアーキテクチャ表現を得る。
この手法をneural architecture optimization(nao)に組み込んで,事前学習した組込みとその有効性を分析し,メトリック学習損失がnasに好影響を与えることを強調する。
コードは \url{https://github.com/Multi-Objective-NAS/self-supervised-nas} で入手できます。
関連論文リスト
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - GeNAS: Neural Architecture Search with Better Generalization [14.92869716323226]
最近のニューラルアーキテクチャサーチ(NAS)アプローチは、対象データに対して優れたネットワークを見つけるために、検証損失または精度に依存している。
そこで本研究では,より一般化した探索型アーキテクチャのためのニューラルアーキテクチャ探索手法について検討する。
論文 参考訳(メタデータ) (2023-05-15T12:44:54Z) - NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
シームズネットワークは、自己教師付き視覚表現学習(SSL)を実現するための最も傾向のある方法の1つである。
NASiamは、初めて微分可能なNASを使用して、多層パーセプトロンプロジェクタと予測器(エンコーダ/予測器ペア)を改善する新しいアプローチである。
NASiamは、小規模(CIFAR-10/CIFAR-100)と大規模(画像Net)画像分類データセットの両方で競合性能を達成し、わずか数GPU時間しかかからない。
論文 参考訳(メタデータ) (2023-01-31T19:48:37Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
ニューラルネットワーク探索(NAS)の一般化特性を統一的枠組みの下で検討する。
我々は, 有限幅政権下でのニューラル・タンジェント・カーネル(NTK)の最小固有値の下(および上)境界を導出する。
トレーニングなしでもNASがトップパフォーマンスアーキテクチャを選択する方法を示す。
論文 参考訳(メタデータ) (2022-09-15T12:11:41Z) - Towards Self-supervised and Weight-preserving Neural Architecture Search [38.497608743382145]
本研究では,現在のNASフレームワークの拡張として,自己教師付き重み保存型ニューラルネットワーク探索(SSWP-NAS)を提案する。
CIFAR-10, CIFAR-100, ImageNetデータセットにおいて, 提案したフレームワークによって探索されたアーキテクチャが, 最先端の精度を実現することを示す。
論文 参考訳(メタデータ) (2022-06-08T18:48:05Z) - AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision
of Weight Sharing [6.171090327531059]
空間から最高のアーキテクチャを選択するためのLearning to Rank手法を紹介します。
また,スーパーネットから得られた弱いラベルのアーキテクチャ表現を事前学習することで,重み共有から弱い管理を活用することを提案する。
NASベンチマークと大規模検索空間を用いた実験により,提案手法はSOTAよりも検索コストが大幅に削減された。
論文 参考訳(メタデータ) (2021-08-06T08:31:42Z) - Landmark Regularization: Ranking Guided Super-Net Training in Neural
Architecture Search [70.57382341642418]
重量共有は、コモディティハードウェア上での検索を可能にするため、ニューラルネットワークアーキテクチャ検索のデファクトスタンダードとなっています。
近年の研究では、スタンドアロンアーキテクチャのパフォーマンスと対応する共有重み付きネットワークのパフォーマンスのランキング障害が実証されている。
本稿では,共有重みネットワークの性能ランキングとスタンドアロンアーキテクチャのパフォーマンスランキングの相関を最大化することを目的とした正規化用語を提案する。
論文 参考訳(メタデータ) (2021-04-12T09:32:33Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
本稿では, ディープステレオマッチングのための最初のエンドツーエンド階層型NASフレームワークを提案する。
我々のフレームワークは、タスク固有の人間の知識をニューラルアーキテクチャ検索フレームワークに組み込んでいる。
KITTI stereo 2012、2015、Middleburyベンチマークで1位、SceneFlowデータセットで1位にランクインしている。
論文 参考訳(メタデータ) (2020-10-26T11:57:37Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Learning Architectures from an Extended Search Space for Language
Modeling [37.79977691127229]
ニューラルアーキテクチャサーチ(NAS)のセル内アーキテクチャとセル間アーキテクチャの両方を学ぶための一般的なアプローチを提案する。
繰り返しのニューラルネットワークモデリングでは、TBとWikiTextのデータに対して強力なベースラインをはるかに上回り、TBに新たな最先端技術が導入された。
学習したアーキテクチャは、他のシステムに優れた転送可能性を示す。
論文 参考訳(メタデータ) (2020-05-06T05:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。