Feature selection for medical diagnosis: Evaluation for using a hybrid
Stacked-Genetic approach in the diagnosis of heart disease
- URL: http://arxiv.org/abs/2103.08175v1
- Date: Mon, 15 Mar 2021 07:31:14 GMT
- Title: Feature selection for medical diagnosis: Evaluation for using a hybrid
Stacked-Genetic approach in the diagnosis of heart disease
- Authors: Jafar Abdollahi, Babak Nouri-Moghaddam
- Abstract summary: Heart disease has been one of the most important causes of death in the last 10 years.
We propose an ensemble-genetic learning method using wrapper feature reduction to select features in disease classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background and purpose: Heart disease has been one of the most important
causes of death in the last 10 years, so the use of classification methods to
diagnose and predict heart disease is very important. If this disease is
predicted before menstruation, it is possible to prevent high mortality of the
disease and provide more accurate and efficient treatment methods. Materials
and Methods: Due to the selection of input features, the use of basic
algorithms can be very time-consuming. Reducing dimensions or choosing a good
subset of features, without risking accuracy, has great importance for basic
algorithms for successful use in the region. In this paper, we propose an
ensemble-genetic learning method using wrapper feature reduction to select
features in disease classification. Findings: The development of a medical
diagnosis system based on ensemble learning to predict heart disease provides a
more accurate diagnosis than the traditional method and reduces the cost of
treatment. Conclusion: The results showed that Thallium Scan and vascular
occlusion were the most important features in the diagnosis of heart disease
and can distinguish between sick and healthy people with 97.57% accuracy.
Related papers
- Predicting Coronary Heart Disease Using a Suite of Machine Learning Models [0.1979158763744267]
Coronary Heart Disease affects millions of people worldwide and is a well-studied area of healthcare.
There are many viable and accurate methods for the diagnosis and prediction of heart disease, but they have limiting points such as invasiveness, late detection, or cost.
Supervised learning via machine learning algorithms presents a low-cost (computationally speaking), non-invasive solution that can be a precursor for early diagnosis.
arXiv Detail & Related papers (2024-09-21T19:22:41Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Evaluating The Accuracy of Classification Algorithms for Detecting Heart
Disease Risk [0.0]
This work utilizes the classification algorithms with a medical dataset of heart disease.
The performance of the utilized algorithms was evaluated using standard metrics such as accuracy, sensitivity and specificity.
The results indicate that the best algorithm for predicting heart disease was Random Forest with an accuracy of 99.24%.
arXiv Detail & Related papers (2023-12-06T06:41:48Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - An Improved Heart Disease Prediction Using Stacked Ensemble Method [0.9187159782788579]
We constructed an ML-based diagnostic system for heart illness forecasting, using a heart disorder dataset.
Our method can easily differentiate between people who have cardiac disease and those who are normal.
arXiv Detail & Related papers (2023-04-12T17:53:59Z) - Analyzing the impact of feature selection on the accuracy of heart
disease prediction [0.5249805590164902]
The aim of this research is to identify the most important risk-factors from a highly dimensional dataset which helps in the accurate classification of heart disease with less complications.
The performance of the classification models improved significantly with a reduced training time as compared with models trained on full feature set.
arXiv Detail & Related papers (2022-06-07T12:51:37Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
Heart disease is one of the deadliest diseases which is hampering the lives of many people around the world.
This paper proposes a novel deep learning architecture using a 1D convolutional neural network for classification between healthy and non-healthy persons.
The proposed network achieves over 97% training accuracy and 96% test accuracy on the dataset.
arXiv Detail & Related papers (2021-05-22T22:00:57Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.