論文の概要: ReinforceBug: A Framework to Generate Adversarial Textual Examples
- arxiv url: http://arxiv.org/abs/2103.08306v1
- Date: Thu, 11 Mar 2021 05:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 04:15:41.613908
- Title: ReinforceBug: A Framework to Generate Adversarial Textual Examples
- Title(参考訳): ReinforceBug: 逆のテキスト例を生成するフレームワーク
- Authors: Bushra Sabir, M. Ali Babar, Raj Gaire
- Abstract要約: ReinforceBugは、未知のデータセットで転送可能なポリシーを学習する強化学習フレームワークである。
その結果,本手法は最先端の攻撃テキスタイルと比較して平均10%の成功率を示した。
- 参考スコア(独自算出の注目度): 0.7734726150561088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial Examples (AEs) generated by perturbing original training examples
are useful in improving the robustness of Deep Learning (DL) based models. Most
prior works, generate AEs that are either unconscionable due to lexical errors
or semantically or functionally deviant from original examples. In this paper,
we present ReinforceBug, a reinforcement learning framework, that learns a
policy that is transferable on unseen datasets and generates utility-preserving
and transferable (on other models) AEs. Our results show that our method is on
average 10% more successful as compared to the state-of-the-art attack
TextFooler. Moreover, the target models have on average 73.64% confidence in
the wrong prediction, the generated AEs preserve the functional equivalence and
semantic similarity (83.38% ) to their original counterparts, and are
transferable on other models with an average success rate of 46%.
- Abstract(参考訳): 原例の摂動によって生成された逆例(AE)は、ディープラーニング(DL)ベースのモデルの堅牢性を改善するのに有用である。
それまでのほとんどの作業では、語彙的誤りや意味的あるいは機能的に元の例から逸脱したAEを生成する。
本稿では、未知のデータセット上で転送可能なポリシーを学習し、ユーティリティ保存および転送可能な(他のモデルで)AEを生成する強化学習フレームワークであるReinforceBugを提案する。
以上の結果から,我々の手法は,最先端攻撃であるTextFoolerと比較して平均10%高い成功率を示した。
さらに、ターゲットモデルは、誤った予測に対する平均73.64%の信頼を持ち、生成されたAEは、元のモデルと機能的等価性と意味的類似性(83.38%)を保ち、平均成功率46%の他のモデルで転送可能である。
関連論文リスト
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Enhancing Adversarial Transferability with Adversarial Weight Tuning [36.09966860069978]
敵対的な例(AE)は、人間の観察者に対して良心を抱きながらモデルを誤解させた。
AWTは、勾配に基づく攻撃法とモデルに基づく攻撃法を組み合わせて、AEの転送可能性を高めるデータフリーチューニング手法である。
論文 参考訳(メタデータ) (2024-08-18T13:31:26Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Enhancing targeted transferability via feature space fine-tuning [21.131915084053894]
アドリラルな例(AE)は、プライバシ保護と堅牢なニューラルネットワークを刺激する可能性のために、広く研究されている。
既存の単純な反復攻撃によって作られたAEを微調整し、未知のモデル間で転送できるようにする。
論文 参考訳(メタデータ) (2024-01-05T09:46:42Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
人間は、新しいタスクを学ぶ際に、過去の経験を明確に表現する能力を持っている。
本稿では,歴史情報を活用するためのアドオンモジュールとして,自己参照(SR)アプローチを提案する。
提案手法は,非教師付き強化学習ベンチマークにおけるIQM(Interquartile Mean)性能と最適ギャップ削減の両面から,最先端の成果を実現する。
論文 参考訳(メタデータ) (2023-11-16T09:07:34Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Ownership Protection of Generative Adversarial Networks [9.355840335132124]
GAN(Generative Adversarial Network)は画像合成において顕著な成功を収めている。
GANの知的財産を技術的に保護することは重要である。
本稿では,対象モデルの共通特性と盗難モデルに基づく新たな所有権保護手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T14:31:58Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - On the Transferability of Adversarial Examples between Encrypted Models [20.03508926499504]
敵の堅牢な防御のために暗号化されたモデルの転送可能性について, 初めて検討した。
画像分類実験において、暗号化されたモデルの使用は、AEsに対して堅牢であるだけでなく、AEsの影響を低減することも確認されている。
論文 参考訳(メタデータ) (2022-09-07T08:50:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。