論文の概要: On the Transferability of Adversarial Examples between Encrypted Models
- arxiv url: http://arxiv.org/abs/2209.02997v1
- Date: Wed, 7 Sep 2022 08:50:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-08 12:37:09.926680
- Title: On the Transferability of Adversarial Examples between Encrypted Models
- Title(参考訳): 暗号化されたモデル間の逆例の転送可能性について
- Authors: Miki Tanaka, Isao Echizen, Hitoshi Kiya
- Abstract要約: 敵の堅牢な防御のために暗号化されたモデルの転送可能性について, 初めて検討した。
画像分類実験において、暗号化されたモデルの使用は、AEsに対して堅牢であるだけでなく、AEsの影響を低減することも確認されている。
- 参考スコア(独自算出の注目度): 20.03508926499504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are well known to be vulnerable to adversarial
examples (AEs). In addition, AEs have adversarial transferability, namely, AEs
generated for a source model fool other (target) models. In this paper, we
investigate the transferability of models encrypted for adversarially robust
defense for the first time. To objectively verify the property of
transferability, the robustness of models is evaluated by using a benchmark
attack method, called AutoAttack. In an image-classification experiment, the
use of encrypted models is confirmed not only to be robust against AEs but to
also reduce the influence of AEs in terms of the transferability of models.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、敵の例(AE)に弱いことがよく知られている。
さらに、AEは逆の転送可能性を持ち、すなわちソースモデルのために生成されたAEは、他の(ターゲット)モデルを騙す。
本稿では,敵の強い防御のために暗号化されたモデルの転送可能性について検討する。
転送可能性の特性を客観的に検証するために、AutoAttackと呼ばれるベンチマークアタック手法を用いてモデルのロバスト性を評価する。
画像分類実験では、暗号化されたモデルの使用がAEに対して堅牢であるだけでなく、モデルの転送可能性の観点からAEの影響を低減することが確認される。
関連論文リスト
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Enhancing Adversarial Transferability with Adversarial Weight Tuning [36.09966860069978]
敵対的な例(AE)は、人間の観察者に対して良心を抱きながらモデルを誤解させた。
AWTは、勾配に基づく攻撃法とモデルに基づく攻撃法を組み合わせて、AEの転送可能性を高めるデータフリーチューニング手法である。
論文 参考訳(メタデータ) (2024-08-18T13:31:26Z) - Exploring Adversarial Attacks against Latent Diffusion Model from the
Perspective of Adversarial Transferability [33.122737005468245]
潜在拡散モデル(LDM)の逆例(AE)の性能に及ぼす代理モデルの性質の影響について検討する。
また, よりスムーズなサロゲートモデルを選択することで, MCベースAEの性能を著しく向上させることができた。
画像分類における逆転写可能性の理論的枠組みから、スムーズなサロゲートモデルがLCMのAEを促進できる理由を説明する理論的解析を行う。
論文 参考訳(メタデータ) (2024-01-13T14:34:18Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial
Transferability [26.39964737311377]
我々はAdaEAと呼ばれる適応型アンサンブル攻撃を提案し、各モデルからの出力の融合を適応的に制御する。
我々は、様々なデータセットに対する既存のアンサンブル攻撃よりも大幅に改善した。
論文 参考訳(メタデータ) (2023-08-05T15:12:36Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Towards Understanding and Boosting Adversarial Transferability from a
Distribution Perspective [80.02256726279451]
近年,ディープニューラルネットワーク(DNN)に対する敵対的攻撃が注目されている。
本稿では,画像の分布を操作することで,敵の例を再現する新しい手法を提案する。
本手法は,攻撃の伝達性を大幅に向上させ,未目標シナリオと目標シナリオの両方において最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-09T09:58:51Z) - On the Adversarial Transferability of ConvMixer Models [16.31814570942924]
本稿では,ConvMixer を含むモデル間の逆転送性について初めて検討する。
画像分類実験では、ConvMixerは逆転写性に弱いことが確認された。
論文 参考訳(メタデータ) (2022-09-19T02:51:01Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
また, 予測誤差を誘導するために, 逆例を独立に学習した別のモデルに移すことが可能であることを示す。
本稿では,頑健な伝達可能な特徴抽出器(RTFE)と呼ばれる,ディープラーニングに基づく事前処理機構を提案する。
論文 参考訳(メタデータ) (2022-09-14T21:09:34Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
本稿では,複合対向攻撃 (CAA) が画像に与える影響を実証する。
異なるモデルのリアルタイム推論を提供し、攻撃レベルのパラメータの設定を容易にする。
CAAに対する敵対的堅牢性を評価するためのリーダーボードも導入されている。
論文 参考訳(メタデータ) (2022-07-16T01:08:44Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。