論文の概要: Decorrelating Adversarial Nets for Clustering Mobile Network Data
- arxiv url: http://arxiv.org/abs/2103.08348v1
- Date: Thu, 11 Mar 2021 15:26:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 14:00:44.147971
- Title: Decorrelating Adversarial Nets for Clustering Mobile Network Data
- Title(参考訳): モバイルネットワークデータのクラスタリングのための逆ネットのデコレーション
- Authors: Marton Kajo, Janik Schnellbach, Stephen S. Mwanje, Georg Carle
- Abstract要約: ディープラーニングのサブセットであるディープクラスタリングは、多くのネットワーク自動化ユースケースにとって価値のあるツールになり得る。
ほとんどの最先端のクラスタリングアルゴリズムはイメージデータセットをターゲットとしており、モバイルネットワークデータへの適用が困難です。
本稿では,ネットワーク自動化のユースケースに適用した場合にも,信頼性の高いディープクラスタリング手法であるDANCEを提案する。
- 参考スコア(独自算出の注目度): 0.7034976835586089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning will play a crucial role in enabling cognitive automation for
the mobile networks of the future. Deep clustering, a subset of deep learning,
could be a valuable tool for many network automation use-cases. Unfortunately,
most state-of-the-art clustering algorithms target image datasets, which makes
them hard to apply to mobile network data due to their highly tuned nature and
related assumptions about the data. In this paper, we propose a new algorithm,
DANCE (Decorrelating Adversarial Nets for Clustering-friendly Encoding),
intended to be a reliable deep clustering method which also performs well when
applied to network automation use-cases. DANCE uses a reconstructive clustering
approach, separating clustering-relevant from clustering-irrelevant features in
a latent representation. This separation removes unnecessary information from
the clustering, increasing consistency and peak performance. We comprehensively
evaluate DANCE and other select state-of-the-art deep clustering algorithms,
and show that DANCE outperforms these algorithms by a significant margin on a
mobile network dataset.
- Abstract(参考訳): ディープラーニングは、未来のモバイルネットワークのための認知自動化を可能にする上で重要な役割を果たします。
ディープラーニングのサブセットであるdeep clusteringは、多くのネットワーク自動化ユースケースにとって貴重なツールになり得る。
残念ながら、ほとんどの最先端のクラスタリングアルゴリズムはイメージデータセットをターゲットにしているため、高度に調整された性質とデータに関する関連する前提のため、モバイルネットワークデータに適用することは困難である。
本稿では,DANCE(Decorrelating Adversarial Nets for Clustering-Friendly Encoding)という,ネットワーク自動化のユースケースにも適用可能な,信頼性の高いディープクラスタリング手法を提案する。
DANCEは再構成的クラスタリングアプローチを採用し、クラスタリング関連とクラスタリング非関連の特徴を潜在表現で分離する。
この分離は、クラスタリングから不要な情報を取り除き、一貫性とピークパフォーマンスを高めます。
我々は、DANCEや他の最先端のディープクラスタリングアルゴリズムを包括的に評価し、モバイルネットワークデータセットにおいて、DANCEがこれらのアルゴリズムよりも優れていることを示す。
関連論文リスト
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Deep clustering with fusion autoencoder [0.0]
ディープクラスタリング(DC)モデルは、オートエンコーダを利用して、結果としてクラスタリングプロセスを促進する固有の特徴を学ぶ。
本稿では、この問題に対処するための新しいDC法を提案し、特に、生成逆数ネットワークとVAEを融合オートエンコーダ(FAE)と呼ばれる新しいオートエンコーダに結合する。
論文 参考訳(メタデータ) (2022-01-11T07:38:03Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCEは、効率的なセグメンテーションモデルのトレーニングと推論のための自動データネットワーク協調最適化である。
入力イメージを適応的にダウンサンプル/ドロップする自動データスライミングを統合し、画像の空間的複雑さによって導かれるトレーニング損失に対するそれに対応するコントリビューションを制御する。
実験と非難研究により、DANCEは効率的なセグメンテーションに向けて「オールウィン」を達成できることを示した。
論文 参考訳(メタデータ) (2021-07-16T04:58:58Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - DAC: Deep Autoencoder-based Clustering, a General Deep Learning
Framework of Representation Learning [0.0]
dac,deep autoencoder-based clustering,深層ニューロンネットワークを用いてクラスタリング表現を学ぶためのデータ駆動フレームワークを提案する。
実験結果から,KMeansクラスタリングアルゴリズムの性能をさまざまなデータセット上で効果的に向上させることができた。
論文 参考訳(メタデータ) (2021-02-15T11:31:00Z) - Deep Fusion Clustering Network [38.540761683389135]
深層クラスタリングのための深層フュージョンクラスタリングネットワーク(DFCN)を提案する。
本ネットワークでは,オートエンコーダとグラフオートエンコーダが学習した表現を明示的にマージするために,相互依存学習に基づく構造化と属性情報融合(SAIF)モジュールを提案する。
6つのベンチマークデータセットの実験により、提案されたDFCNは最先端のディープクラスタリング手法よりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-12-15T09:37:59Z) - Dynamic Clustering in Federated Learning [15.37652170495055]
本稿では,生成型逆ネットワーク型クラスタリング,クラスタキャリブレーション,クラスタ分割という3相データクラスタリングアルゴリズムを提案する。
提案アルゴリズムは,セルラーネットワークハンドオーバを含む予測モデルの性能を43%向上させる。
論文 参考訳(メタデータ) (2020-12-07T15:30:07Z) - Online Deep Clustering for Unsupervised Representation Learning [108.33534231219464]
オンラインディープクラスタリング(ODC)は、交互にではなく、クラスタリングとネットワーク更新を同時に実行する。
我々は,2つの動的メモリモジュール,すなわち,サンプルラベルと特徴を格納するサンプルメモリと,セントロイド進化のためのセントロイドメモリを設計,維持する。
このように、ラベルとネットワークは交互にではなく肩から肩へと進化する。
論文 参考訳(メタデータ) (2020-06-18T16:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。