Decorrelating Adversarial Nets for Clustering Mobile Network Data
- URL: http://arxiv.org/abs/2103.08348v1
- Date: Thu, 11 Mar 2021 15:26:26 GMT
- Title: Decorrelating Adversarial Nets for Clustering Mobile Network Data
- Authors: Marton Kajo, Janik Schnellbach, Stephen S. Mwanje, Georg Carle
- Abstract summary: A subset of deep learning, deep clustering could be a valuable tool for many network automation use-cases.
Most state-of-the-art clustering algorithms target image datasets, which makes them hard to apply to mobile network data.
We propose a new algorithm, DANCE, intended to be a reliable deep clustering method which also performs well when applied to network automation use-cases.
- Score: 0.7034976835586089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning will play a crucial role in enabling cognitive automation for
the mobile networks of the future. Deep clustering, a subset of deep learning,
could be a valuable tool for many network automation use-cases. Unfortunately,
most state-of-the-art clustering algorithms target image datasets, which makes
them hard to apply to mobile network data due to their highly tuned nature and
related assumptions about the data. In this paper, we propose a new algorithm,
DANCE (Decorrelating Adversarial Nets for Clustering-friendly Encoding),
intended to be a reliable deep clustering method which also performs well when
applied to network automation use-cases. DANCE uses a reconstructive clustering
approach, separating clustering-relevant from clustering-irrelevant features in
a latent representation. This separation removes unnecessary information from
the clustering, increasing consistency and peak performance. We comprehensively
evaluate DANCE and other select state-of-the-art deep clustering algorithms,
and show that DANCE outperforms these algorithms by a significant margin on a
mobile network dataset.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Deep clustering with fusion autoencoder [0.0]
Deep clustering (DC) models capitalize on autoencoders to learn intrinsic features which facilitate the clustering process in consequence.
In this paper, a novel DC method is proposed to address this issue. Specifically, the generative adversarial network and VAE are coalesced into a new autoencoder called fusion autoencoder (FAE)
arXiv Detail & Related papers (2022-01-11T07:38:03Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCE is an automated simultaneous data-network co-optimization for efficient segmentation model training and inference.
It integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity.
Experiments and ablating studies demonstrate that DANCE can achieve "all-win" towards efficient segmentation.
arXiv Detail & Related papers (2021-07-16T04:58:58Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - DAC: Deep Autoencoder-based Clustering, a General Deep Learning
Framework of Representation Learning [0.0]
We propose DAC, Deep Autoencoder-based Clustering, a data-driven framework to learn clustering representations using deep neuron networks.
Experiment results show that our approach could effectively boost performance of the KMeans clustering algorithm on a variety of datasets.
arXiv Detail & Related papers (2021-02-15T11:31:00Z) - Deep Fusion Clustering Network [38.540761683389135]
We propose a Deep Fusion Clustering Network (DFCN) for deep clustering.
In our network, an interdependency learning-based Structure and Attribute Information Fusion (SAIF) module is proposed to explicitly merge the representations learned by an autoencoder and a graph autoencoder.
Experiments on six benchmark datasets have demonstrated that the proposed DFCN consistently outperforms the state-of-the-art deep clustering methods.
arXiv Detail & Related papers (2020-12-15T09:37:59Z) - Dynamic Clustering in Federated Learning [15.37652170495055]
We propose a three-phased data clustering algorithm, namely: generative adversarial network-based clustering, cluster calibration, and cluster division.
Our algorithm improves the performance of forecasting models, including cellular network handover, by 43%.
arXiv Detail & Related papers (2020-12-07T15:30:07Z) - Online Deep Clustering for Unsupervised Representation Learning [108.33534231219464]
Online Deep Clustering (ODC) performs clustering and network update simultaneously rather than alternatingly.
We design and maintain two dynamic memory modules, i.e., samples memory to store samples labels and features, and centroids memory for centroids evolution.
In this way, labels and the network evolve shoulder-to-shoulder rather than alternatingly.
arXiv Detail & Related papers (2020-06-18T16:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.