DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference
- URL: http://arxiv.org/abs/2107.07706v1
- Date: Fri, 16 Jul 2021 04:58:58 GMT
- Title: DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference
- Authors: Chaojian Li, Wuyang Chen, Yuchen Gu, Tianlong Chen, Yonggan Fu,
Zhangyang Wang, Yingyan Lin
- Abstract summary: DANCE is an automated simultaneous data-network co-optimization for efficient segmentation model training and inference.
It integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity.
Experiments and ablating studies demonstrate that DANCE can achieve "all-win" towards efficient segmentation.
- Score: 85.02494022662505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation for scene understanding is nowadays widely demanded,
raising significant challenges for the algorithm efficiency, especially its
applications on resource-limited platforms. Current segmentation models are
trained and evaluated on massive high-resolution scene images ("data level")
and suffer from the expensive computation arising from the required multi-scale
aggregation("network level"). In both folds, the computational and energy costs
in training and inference are notable due to the often desired large input
resolutions and heavy computational burden of segmentation models. To this end,
we propose DANCE, general automated DAta-Network Co-optimization for Efficient
segmentation model training and inference. Distinct from existing efficient
segmentation approaches that focus merely on light-weight network design, DANCE
distinguishes itself as an automated simultaneous data-network co-optimization
via both input data manipulation and network architecture slimming.
Specifically, DANCE integrates automated data slimming which adaptively
downsamples/drops input images and controls their corresponding contribution to
the training loss guided by the images' spatial complexity. Such a downsampling
operation, in addition to slimming down the cost associated with the input size
directly, also shrinks the dynamic range of input object and context scales,
therefore motivating us to also adaptively slim the network to match the
downsampled data. Extensive experiments and ablating studies (on four SOTA
segmentation models with three popular segmentation datasets under two training
settings) demonstrate that DANCE can achieve "all-win" towards efficient
segmentation(reduced training cost, less expensive inference, and better mean
Intersection-over-Union (mIoU)).
Related papers
- Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPU memory constraints have become a notable bottleneck in training such sizable models.
This study advocates partitioning the model across GPU and generating synthetic intermediate labels to train individual segments.
This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy.
arXiv Detail & Related papers (2024-03-17T13:06:29Z) - Joint Optimization of Class-Specific Training- and Test-Time Data
Augmentation in Segmentation [35.41274775082237]
This paper presents an effective and general data augmentation framework for medical image segmentation.
We adopt a computationally efficient and data-efficient gradient-based meta-learning scheme to align the distribution of training and validation data.
We demonstrate the effectiveness of our method on four medical image segmentation tasks with two state-of-the-art segmentation models, DeepMedic and nnU-Net.
arXiv Detail & Related papers (2023-05-30T14:48:45Z) - Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning [17.535392299244066]
Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces.
The data variability between inter-session and inter-subject scenarios presents a great challenge.
Existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability.
We propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition
arXiv Detail & Related papers (2023-05-13T21:47:55Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Efficient Augmentation for Imbalanced Deep Learning [8.38844520504124]
We study a convolutional neural network's internal representation of imbalanced image data.
We measure the generalization gap between a model's feature embeddings in the training and test sets, showing that the gap is wider for minority classes.
This insight enables us to design an efficient three-phase CNN training framework for imbalanced data.
arXiv Detail & Related papers (2022-07-13T09:43:17Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
We show that we can obtain state-of-the-art results using a semi-supervised approach, specifically a self-training paradigm.
We first train a teacher model on labeled data, and then generate pseudo labels on a large set of unlabeled data.
Our robust training framework can digest human-annotated and pseudo labels jointly and achieve top performances on Cityscapes, CamVid and KITTI datasets.
arXiv Detail & Related papers (2020-04-30T17:09:17Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.