Hybrid Quantum Classical Simulations
- URL: http://arxiv.org/abs/2210.02811v2
- Date: Fri, 7 Oct 2022 06:40:54 GMT
- Title: Hybrid Quantum Classical Simulations
- Authors: Dennis Willsch, Manpreet Jattana, Madita Willsch, Sebastian Schulz,
Fengping Jin, Hans De Raedt, Kristel Michielsen
- Abstract summary: We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report on two major hybrid applications of quantum computing, namely, the
quantum approximate optimisation algorithm (QAOA) and the variational quantum
eigensolver (VQE). Both are hybrid quantum classical algorithms as they require
incremental communication between a classical central processing unit and a
quantum processing unit to solve a problem. We find that the QAOA scales much
better to larger problems than random guessing, but requires significant
computational resources. In contrast, a coarsely discretised version of quantum
annealing called approximate quantum annealing (AQA) can reach the same
promising scaling behaviour using much less computational resources. For the
VQE, we find reasonable results in approximating the ground state energy of the
Heisenberg model when suitable choices of initial states and parameters are
used. Our design and implementation of a general quasi-dynamical evolution
further improves these results.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
We study the scaling of the quantum resources to reach a fixed success probability as the problem size increases.
Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop.
arXiv Detail & Related papers (2023-07-31T18:01:15Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Adapting the HHL algorithm to quantum many-body theory [0.0]
We implement the Harrow-Hassidim-Lloyd (HHL) algorithm to make precise predictions of correlation energies for light molecular systems.
We introduce the following variants of HHL for different eras of quantum computing.
We demonstrate the ability of the NISQ variant of AdaptHHLite to capture correlation energy precisely.
arXiv Detail & Related papers (2022-12-30T15:38:59Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian.
VQE has been successfully applied to solve the electronic Schr"odinger equation for a variety of small molecules.
Modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze.
arXiv Detail & Related papers (2021-03-15T16:25:36Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Classical variational simulation of the Quantum Approximate Optimization
Algorithm [0.0]
We introduce a method to simulate layered quantum circuits consisting of parametrized gates.
A neural-network parametrization of the many-qubit wave function is used.
For the largest circuits simulated, we reach 54 qubits at 4 QAOA layers.
arXiv Detail & Related papers (2020-09-03T15:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.