Spontaneous Parametric Down-Conversion from Resonant Metasurfaces
- URL: http://arxiv.org/abs/2103.08524v1
- Date: Mon, 15 Mar 2021 16:47:44 GMT
- Title: Spontaneous Parametric Down-Conversion from Resonant Metasurfaces
- Authors: Tom\'as Santiago-Cruz, Anna Fedotova, Vitaliy Sultanov, Maximilian A.
Weissflog, Dennis Arslan, Mohammadreza Younesi, Thomas Pertsch, Isabelle
Staude, Frank Setzpfandt and Maria V. Chekhova
- Abstract summary: We demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces.
By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: All-dielectric optical metasurfaces are a workhorse in nano-optics due to
both their ability to manipulate light in different degrees of freedom and
their excellent performance at light frequency conversion. Here, we demonstrate
first-time generation of photon pairs via spontaneous parametric-down
conversion in lithium niobate quantum optical metasurfaces with electric and
magnetic Mie-like resonances at various wavelengths. By engineering the quantum
optical metasurface, we tailor the photon-pair spectrum in a controlled way.
Within a narrow bandwidth around the resonance, the rate of pair production is
enhanced up to two orders of magnitude compared to an unpatterned film of the
same thickness and material. These results enable flat-optics sources of
entangled photons -- a new promising platform for quantum optics experiments.
Related papers
- Giant Generation of Polarization-Entangled Photons in Metal Organic
Framework Waveguides [0.0]
Metal-organic frameworks (MOFs) are a novel class of optical materials with customizable nonlinear properties and proven chemical and optical stability.
We study phase-matching conditions for collinear type-II spontaneous parametric down conversion with MOF-based one dimensional waveguides.
We find that the biaxial MOF crystal improves two-fold the conversion efficiency over a periodically-poled KTP waveguide of identical dimensions.
arXiv Detail & Related papers (2023-11-28T22:51:41Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Resonant Semiconductor Metasurfaces for Generating Complex Quantum
States [0.0]
We generate entangled photons via spontaneous parametric down-conversion in semiconductor metasurfaces with high-quality resonances.
Our results demonstrate the multifunctional use of metasurfaces for quantum state engineering.
arXiv Detail & Related papers (2022-04-21T19:01:04Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Plexcitonic quantum light emission from nanoparticle-on-mirror cavities [0.0]
We model a dark-field set-up and explore the photon statistics of the scattered light under grazing laser illumination.
We reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation.
arXiv Detail & Related papers (2021-12-18T13:22:11Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Spontaneous Parametric Down-Conversion from Subwavelength Nonlinear
Films [0.0]
We demonstrate photon pair generation via spontaneous parametric down-wavelength (SPDC) from subconversion films.
We obtained photon pairs with a spectral bandwidth of 500;nm, limited only by the overall detection efficiency.
Our experiments lay the groundwork for the future development of flat SPDC sources, including QOM.
arXiv Detail & Related papers (2020-09-01T10:07:11Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.