論文の概要: A LiDAR-Guided Framework for Video Enhancement
- arxiv url: http://arxiv.org/abs/2103.08764v1
- Date: Mon, 15 Mar 2021 23:25:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 22:44:33.696506
- Title: A LiDAR-Guided Framework for Video Enhancement
- Title(参考訳): 映像強調のためのLiDARガイドフレームワーク
- Authors: Yu Feng, Patrick Hansen, Paul N. Whatmough, Guoyu Lu, and Yuhao Zhu
- Abstract要約: 本稿では,映像強調タスクの品質と実行速度を同時に向上するフレームワークを提案する。
我々のフレームワークの鍵は、低画質ビデオから正確な動きを生成するピクセルモーション推定アルゴリズムです。
動き情報を利用して高品質な画像再構成を導く汎用フレームワークを実証する。
- 参考スコア(独自算出の注目度): 12.214100285132796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a general framework that simultaneously improves the
quality and the execution speed of a range of video enhancement tasks, such as
super-sampling, deblurring, and denoising. The key to our framework is a pixel
motion estimation algorithm that generates accurate motion from low-quality
videos while being computationally very lightweight. Our motion estimation
algorithm leverages point cloud information, which is readily available in
today's autonomous devices and will only become more common in the future. We
demonstrate a generic framework that leverages the motion information to guide
high-quality image reconstruction. Experiments show that our framework
consistently outperforms the state-of-the-art video enhancement algorithms
while improving the execution speed by an order of magnitude.
- Abstract(参考訳): 本稿では,スーパーサンプリング,デブラリング,デノイジングなどの映像エンハンスメントタスクの品質と実行速度を同時に向上させる汎用フレームワークを提案する。
我々のフレームワークの鍵となるのは、低品質のビデオから高精度な動きを生成するピクセル運動推定アルゴリズムである。
私たちのモーション推定アルゴリズムは、今日の自律デバイスで容易に利用できるポイントクラウド情報を利用しており、将来的にはより一般的になるでしょう。
動き情報を利用して高品質な画像再構成を導く汎用フレームワークを実証する。
実験により,我々のフレームワークは,最先端の映像強調アルゴリズムより一貫した性能を示しながら,実行速度を桁違いに向上させた。
関連論文リスト
- MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
ビデオ処理の課題に対処するための4つの重要なコントリビューションを提示する。
まず,3次元逆ベクトル量子化バリエンコエンコオートコーダを紹介する。
次に,テキスト・ビデオ生成フレームワークであるMotionAuraを紹介する。
第3に,スペクトル変換器を用いたデノナイジングネットワークを提案する。
第4に,Sketch Guided Videopaintingのダウンストリームタスクを導入する。
論文 参考訳(メタデータ) (2024-10-10T07:07:56Z) - LADDER: An Efficient Framework for Video Frame Interpolation [12.039193291203492]
ビデオフレーム補間(VFI)は、スローモーション生成、フレームレート変換、ビデオフレーム復元など、様々な応用において重要な技術である。
本稿では,効率と品質のバランスをとることを目的とした,効率的なビデオフレームフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T06:47:17Z) - Inflation with Diffusion: Efficient Temporal Adaptation for
Text-to-Video Super-Resolution [19.748048455806305]
本稿では,効率的な拡散型テキスト・ビデオ・スーパーレゾリューション(SR)チューニング手法を提案する。
本稿では,我々の拡張アーキテクチャに基づく異なるチューニング手法について検討し,計算コストと超解像品質のトレードオフを報告する。
論文 参考訳(メタデータ) (2024-01-18T22:25:16Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
コード化された表現をピクセルに復号することなく直接拡張・解析することがより効率的である。
再構成と直接拡張/分析の両方をサポートするために,コンパクト表現の学習を目標とする汎用型ニューラルビデオ符号化(VNVC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T03:04:57Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Videoは制御可能なT2V拡散モデルであり、テキストプロンプトやエッジや奥行きマップのような参照制御マップに条件付のビデオを生成することができる。
本稿では,拡散に基づく生成プロセスに,コンテンツの事前と動作を組み込む新しい手法を提案する。
我々のフレームワークは、制御可能なテキスト・ツー・ビデオ生成における既存の最先端手法と比較して、高品質で一貫性のあるビデオを生成する。
論文 参考訳(メタデータ) (2023-05-23T09:03:19Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
ほとんどの復元ネットワークは遅く、高い計算ボトルネックがあり、リアルタイムビデオ拡張には使用できない。
本研究では,ライブビデオ通話やビデオストリームなどの実用的なユースケースをリアルタイムに拡張するための,効率的かつ高速なフレームワークを設計する。
提案手法を評価するために,実世界のビデオ通話とストリーミングのシナリオを示す2つの新しいデータセットをエミュレートし,ReBotNetがより少ない計算,メモリ要求の低減,より高速な推論時間で既存手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-03-23T17:58:05Z) - Exploring Long- and Short-Range Temporal Information for Learned Video
Compression [54.91301930491466]
圧縮性能を高めるために,映像コンテンツの特徴を活かし,時間的情報を探究することに注力する。
本稿では,画像群(GOP)内で画像の推測中に連続的に更新できる時間前処理を提案する。
この場合、時間的事前は、現在のGOP内のすべてのデコードされた画像の貴重な時間的情報を含む。
本稿では,マルチスケール補償を実現する階層構造を設計する。
論文 参考訳(メタデータ) (2022-08-07T15:57:18Z) - Memory-Augmented Non-Local Attention for Video Super-Resolution [61.55700315062226]
低解像度(LR)ビデオから高忠実度高解像度(HR)ビデオを生成するための新しいビデオ超解法を提案する。
従来の方法は、主に時間的隣のフレームを利用して、現在のフレームの超解像を支援する。
対照的に、フレームアライメントなしでビデオの超解像を可能にするクロスフレーム非局所アテンション機構を考案する。
論文 参考訳(メタデータ) (2021-08-25T05:12:14Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z) - Plug-and-Play Algorithms for Video Snapshot Compressive Imaging [41.818167109996885]
低速2dセンサ(検出器)を用いたスナップショット映像撮影(sci)の再構成問題を考える。
SCIの基本原則は、異なるマスクを持つフレームを変調し、エンコードされたフレームをセンサーのスナップショットに統合することです。
私たちの日常生活で大規模な問題(HDまたはUHDビデオ)にSCIを適用することは、まだ1つのボトルネックが再構築アルゴリズムにあります。
論文 参考訳(メタデータ) (2021-01-13T00:51:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。