論文の概要: MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion
- arxiv url: http://arxiv.org/abs/2410.07659v1
- Date: Thu, 10 Oct 2024 07:07:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:46:26.763180
- Title: MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion
- Title(参考訳): MotionAura:離散拡散を用いた高精細・高精細映像の生成
- Authors: Onkar Susladkar, Jishu Sen Gupta, Chirag Sehgal, Sparsh Mittal, Rekha Singhal,
- Abstract要約: ビデオ処理の課題に対処するための4つの重要なコントリビューションを提示する。
まず,3次元逆ベクトル量子化バリエンコエンコオートコーダを紹介する。
次に,テキスト・ビデオ生成フレームワークであるMotionAuraを紹介する。
第3に,スペクトル変換器を用いたデノナイジングネットワークを提案する。
第4に,Sketch Guided Videopaintingのダウンストリームタスクを導入する。
- 参考スコア(独自算出の注目度): 3.7270979204213446
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The spatio-temporal complexity of video data presents significant challenges in tasks such as compression, generation, and inpainting. We present four key contributions to address the challenges of spatiotemporal video processing. First, we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with masked token modeling to enhance spatiotemporal video compression. The model achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction quality by employing a novel training strategy with full frame masking. Second, we present MotionAura, a text-to-video generation framework that utilizes vector-quantized diffusion models to discretize the latent space and capture complex motion dynamics, producing temporally coherent videos aligned with text prompts. Third, we propose a spectral transformer-based denoising network that processes video data in the frequency domain using the Fourier Transform. This method effectively captures global context and long-range dependencies for high-quality video generation and denoising. Lastly, we introduce a downstream task of Sketch Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. Our models achieve SOTA performance on a range of benchmarks. Our work offers robust frameworks for spatiotemporal modeling and user-driven video content manipulation. We will release the code, datasets, and models in open-source.
- Abstract(参考訳): ビデオデータの時空間的複雑さは、圧縮、生成、塗装といったタスクにおいて大きな課題をもたらす。
時空間ビデオ処理の課題に対処するための4つの重要なコントリビューションを提示する。
まず3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE)を紹介する。
本モデルは,フルフレームマスキングを用いた新しいトレーニング戦略を用いることで,時間的整合性とSOTA(State-of-the-art)復元品質を向上する。
第2に,ベクトル量子化拡散モデルを用いたテキスト・ビデオ生成フレームワークであるMotionAuraを提案する。
第3に、フーリエ変換を用いて周波数領域の映像データを処理するスペクトル変換器に基づく復調ネットワークを提案する。
この方法は,高品質な映像生成とデノーミングのために,グローバルなコンテキストと長距離依存関係を効果的にキャプチャする。
最後に,Sketch Guided Video Inpaintingのダウンストリームタスクを紹介する。
このタスクはパラメータ効率の良い微調整にLoRA(Lo-Rank Adaptation)を利用する。
我々のモデルは、様々なベンチマークでSOTA性能を達成する。
我々の研究は、時空間モデリングとユーザ主導のビデオコンテンツ操作のための堅牢なフレームワークを提供する。
コード、データセット、モデルをオープンソースでリリースします。
関連論文リスト
- xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1(xGen-SynVideo-1)は、テキスト記述からリアルなシーンを生成することができるテキスト・ツー・ビデオ(T2V)生成モデルである。
VidVAEはビデオデータを空間的にも時間的にも圧縮し、視覚トークンの長さを大幅に削減する。
DiTモデルは、空間的および時間的自己アテンション層を取り入れ、異なる時間枠とアスペクト比をまたいだ堅牢な一般化を可能にする。
論文 参考訳(メタデータ) (2024-08-22T17:55:22Z) - Hybrid Video Diffusion Models with 2D Triplane and 3D Wavelet Representation [35.52770785430601]
複雑な依存関係をより効率的にキャプチャできるHVtemporalDMというハイブリッドビデオオートエンコーダを提案する。
HVDMは、ビデオの歪んだ表現を抽出するハイブリッドビデオオートエンコーダによって訓練される。
当社のハイブリッドオートエンコーダは、生成されたビデオに詳細な構造と詳細を付加した、より包括的なビデオラテントを提供します。
論文 参考訳(メタデータ) (2024-02-21T11:46:16Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
本稿では,長期的空間的および時間的依存関係に対処する新しいビデオ生成モデルを提案する。
提案手法は,3次元認識型生成フレームワークにインスパイアされた,明示的で単純化された3次元平面のハイブリッド表現を取り入れたものである。
我々のモデルは高精細度ビデオクリップを解像度256時間256$ピクセルで合成し、フレームレート30fpsで5ドル以上まで持続する。
論文 参考訳(メタデータ) (2024-01-11T16:48:44Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
本稿では,高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細映像・高精細映像・高精細・高精細・高精細・高精細・高精細・高精細
我々は,テキスト・ツー・イメージ・プレトレーニング,ビデオ・プレトレーニング,高品質ビデオファインタニングの3つの異なる段階を同定し,評価する。
論文 参考訳(メタデータ) (2023-11-25T22:28:38Z) - Conditional Generative Modeling for Images, 3D Animations, and Video [4.422441608136163]
コンピュータビジョンのための生成モデリングの分野における革新を推進しようとする論文。
研究は、ノイズと視覚データの変換を提供するアーキテクチャと、生成タスクや3Dコンテンツ操作にエンコーダ・デコーダアーキテクチャを適用することに焦点を当てている。
論文 参考訳(メタデータ) (2023-10-19T21:10:39Z) - Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation [55.36617538438858]
本研究では,空間的知覚と時間的知覚の相互作用を強化する新しいアプローチを提案する。
我々はHD-VG-130Mという大規模かつオープンソースのビデオデータセットをキュレートする。
論文 参考訳(メタデータ) (2023-05-18T11:06:15Z) - TubeDETR: Spatio-Temporal Video Grounding with Transformers [89.71617065426146]
与えられたテキストクエリに対応するビデオにおいて、アテンポラルチューブをエンコーダでローカライズする問題について考察する。
この課題に対処するために,テキスト条件付きオブジェクト検出における近年の成功に触発された変換器アーキテクチャであるTubeDETRを提案する。
論文 参考訳(メタデータ) (2022-03-30T16:31:49Z) - Autoencoding Video Latents for Adversarial Video Generation [0.0]
AVLAEは2ストリームの遅延オートエンコーダであり、ビデオ配信は敵の訓練によって学習される。
提案手法は, 発生器の明示的な構造構成を伴わずとも, 動きや外見の符号を乱すことを学習できることを実証する。
論文 参考訳(メタデータ) (2022-01-18T11:42:14Z) - Enhanced Quadratic Video Interpolation [56.54662568085176]
より複雑なシーンや動きパターンを扱うために,拡張された2次ビデオ(EQVI)モデルを提案する。
さらなる性能向上のために,学習可能な拡張プロセスと見なせる新しいマルチスケール核融合ネットワーク(MS-Fusion)を考案した。
提案されたEQVIモデルは、AIM 2020 Video Temporal Super-Resolution Challengeで優勝した。
論文 参考訳(メタデータ) (2020-09-10T02:31:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。