Quantitative Effectiveness Assessment and Role Categorization of
Individual Units in Convolutional Neural Networks
- URL: http://arxiv.org/abs/2103.09716v1
- Date: Wed, 17 Mar 2021 15:18:18 GMT
- Title: Quantitative Effectiveness Assessment and Role Categorization of
Individual Units in Convolutional Neural Networks
- Authors: Yang Zhao and Hao Zhang
- Abstract summary: We propose a method for quantitatively clarifying the status and usefulness of single unit of CNN in image classification tasks.
The technical substance of our method is ranking the importance of unit for each class in classification based on calculation of specifically defined entropy.
All of the network units are divided into four categories according to their performance on training and testing data.
- Score: 23.965084518584298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying the roles of individual units is critical for understanding the
mechanism of convolutional neural networks (CNNs). However, it is challenging
to give the fully automatic and quantitative measures for effectiveness
assessment of individual units in CNN. To this end, we propose a novel method
for quantitatively clarifying the status and usefulness of single unit of CNN
in image classification tasks. The technical substance of our method is ranking
the importance of unit for each class in classification based on calculation of
specifically defined entropy using algebraic topological tools. It could be
implemented totally by machine without any human intervention. Some interesting
phenomena including certain kind of phase transition are observed via the
evolution of accuracy and loss of network in the successive ablation process of
units. All of the network units are divided into four categories according to
their performance on training and testing data. The role categorization is
excellent startpoint for network construction and simplification. The diverse
utility and contribution to the network generalization of units in
classification tasks are thoroughly illustrated by extensive experiments on
network (VGG) and dataset (ImageNet) with considerable scale. It is easy for
our method to have extensional applications on other network models and tasks
without essential difficulties.
Related papers
- Identifying Sub-networks in Neural Networks via Functionally Similar Representations [41.028797971427124]
We take a step toward automating the understanding of the network by investigating the existence of distinct sub-networks.
Our approach offers meaningful insights into the behavior of neural networks with minimal human and computational cost.
arXiv Detail & Related papers (2024-10-21T20:19:00Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
We present Agglomerator, a framework capable of providing a representation of part-whole hierarchies from visual cues.
We evaluate our method on common datasets, such as SmallNORB, MNIST, FashionMNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2022-03-07T10:56:13Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - Analyzing Representations inside Convolutional Neural Networks [8.803054559188048]
We propose a framework to categorize the concepts a network learns based on the way it clusters a set of input examples.
This framework is unsupervised and can work without any labels for input features.
We extensively evaluate the proposed method and demonstrate that it produces human-understandable and coherent concepts.
arXiv Detail & Related papers (2020-12-23T07:10:17Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
We propose a graph meta-learning framework -- Graph Prototypical Networks (GPN)
GPN is able to perform textitmeta-learning on an attributed network and derive a highly generalizable model for handling the target classification task.
arXiv Detail & Related papers (2020-06-23T04:13:23Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - Stochastic encoding of graphs in deep learning allows for complex
analysis of gender classification in resting-state and task functional brain
networks from the UK Biobank [0.13706331473063876]
We introduce a encoding method in an ensemble of CNNs to classify functional connectomes by gender.
We measure the salience of three brain networks involved in task- and resting-states, and their interaction.
arXiv Detail & Related papers (2020-02-25T15:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.