Aggregated Multi-GANs for Controlled 3D Human Motion Prediction
- URL: http://arxiv.org/abs/2103.09755v1
- Date: Wed, 17 Mar 2021 16:22:36 GMT
- Title: Aggregated Multi-GANs for Controlled 3D Human Motion Prediction
- Authors: Zhenguang Liu, Kedi Lyu, Shuang Wu, Haipeng Chen, Yanbin Hao, Shouling
Ji
- Abstract summary: We propose a generalization of the human motion prediction task in which control parameters can be readily incorporated to adjust the forecasted motion.
Our method is compelling in that it enables manipulable motion prediction across activity types and allows customization of the human movement in a variety of fine-grained ways.
- Score: 39.84142236414808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human motion prediction from historical pose sequence is at the core of many
applications in machine intelligence. However, in current state-of-the-art
methods, the predicted future motion is confined within the same activity. One
can neither generate predictions that differ from the current activity, nor
manipulate the body parts to explore various future possibilities. Undoubtedly,
this greatly limits the usefulness and applicability of motion prediction. In
this paper, we propose a generalization of the human motion prediction task in
which control parameters can be readily incorporated to adjust the forecasted
motion. Our method is compelling in that it enables manipulable motion
prediction across activity types and allows customization of the human movement
in a variety of fine-grained ways. To this aim, a simple yet effective
composite GAN structure, consisting of local GANs for different body parts and
aggregated via a global GAN is presented. The local GANs game in lower
dimensions, while the global GAN adjusts in high dimensional space to avoid
mode collapse. Extensive experiments show that our method outperforms
state-of-the-art. The codes are available at
https://github.com/herolvkd/AM-GAN.
Related papers
- GazeMoDiff: Gaze-guided Diffusion Model for Stochastic Human Motion Prediction [10.982807572404166]
We present GazeMo - a novel gaze-guided denoising diffusion model to generate human motions.
Our method first uses a gaze encoder to extract the gaze and motion features respectively, then employs a graph attention network to fuse these features.
Our method outperforms the state-of-the-art methods by a large margin in terms of multi-modal final error.
arXiv Detail & Related papers (2023-12-19T12:10:12Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Diverse Human Motion Prediction Guided by Multi-Level Spatial-Temporal
Anchors [21.915057426589744]
We propose a simple yet effective approach that disentangles randomly sampled codes with a deterministic learnable component named anchors to promote sample precision and diversity.
In principle, our spatial-temporal anchor-based sampling (STARS) can be applied to different motion predictors.
arXiv Detail & Related papers (2023-02-09T18:58:07Z) - DMMGAN: Diverse Multi Motion Prediction of 3D Human Joints using
Attention-Based Generative Adverserial Network [9.247294820004143]
We propose a transformer-based generative model for forecasting multiple diverse human motions.
Our model first predicts the pose of the body relative to the hip joint. Then the textitHip Prediction Module predicts the trajectory of the hip movement for each predicted pose frame.
We show that our system outperforms the state-of-the-art in human motion prediction while it can predict diverse multi-motion future trajectories with hip movements.
arXiv Detail & Related papers (2022-09-13T23:22:33Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
We introduce the task of action-driven human motion prediction.
It aims to predict multiple plausible future motions given a sequence of action labels and a short motion history.
arXiv Detail & Related papers (2022-05-31T08:38:07Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Learning to Predict Diverse Human Motions from a Single Image via
Mixture Density Networks [9.06677862854201]
We propose a novel approach to predict future human motions from a single image, with mixture density networks (MDN) modeling.
Contrary to most existing deep human motion prediction approaches, the multimodal nature of MDN enables the generation of diverse future motion hypotheses.
Our trained model directly takes an image as input and generates multiple plausible motions that satisfy the given condition.
arXiv Detail & Related papers (2021-09-13T08:49:33Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
We focus on long-term prediction; that is, generating long sequences of human motion that is plausible.
We propose a model to generate non-deterministic, textitever-changing, perpetual human motion.
We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency.
arXiv Detail & Related papers (2020-07-27T21:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.