論文の概要: Danish Fungi 2020 -- Not Just Another Image Recognition Dataset
- arxiv url: http://arxiv.org/abs/2103.10107v1
- Date: Thu, 18 Mar 2021 09:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 13:54:13.949148
- Title: Danish Fungi 2020 -- Not Just Another Image Recognition Dataset
- Title(参考訳): デンマークのfungi 2020 - 単なる画像認識データセットではない
- Authors: Luk\'a\v{s} Picek, Milan \v{S}ulc, Ji\v{r}\'i Matas, Jacob
Heilmann-Clausen, Thomas S. Jeppesen, Thomas L{\ae}ss{\o}e, Tobias Fr{\o}slev
- Abstract要約: デンマークのFungi 2020(DF20)という新しいきめ細かいデータセットとベンチマークを紹介します。
データセットはデンマークの菌類アトラスに提出された観測結果から構築されている。
df20はimagenetと重複しないため、imagenetの公開チェックポイントから微調整されたモデルの偏りのない比較が可能になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel fine-grained dataset and benchmark, the Danish Fungi
2020 (DF20). The dataset, constructed from observations submitted to the Danish
Fungal Atlas, is unique in its taxonomy-accurate class labels, small number of
errors, highly unbalanced long-tailed class distribution, rich observation
metadata, and well-defined class hierarchy. DF20 has zero overlap with
ImageNet, allowing unbiased comparison of models fine-tuned from publicly
available ImageNet checkpoints. The proposed evaluation protocol enables
testing the ability to improve classification using metadata -- e.g. precise
geographic location, habitat, and substrate, facilitates classifier calibration
testing, and finally allows to study the impact of the device settings on the
classification performance. Experiments using Convolutional Neural Networks
(CNN) and the recent Vision Transformers (ViT) show that DF20 presents a
challenging task. Interestingly, ViT achieves results superior to CNN baselines
with 81.25% accuracy, reducing the CNN error by 13%. A baseline procedure for
including metadata into the decision process improves the classification
accuracy by more than 3.5 percentage points, reducing the error rate by 20%.
The source code for all methods and experiments is available at
https://sites.google.com/view/danish-fungi-dataset.
- Abstract(参考訳): 我々は,新しい細粒度データセットとベンチマークであるdanish fungi 2020 (df20) を紹介する。
このデータセットはデンマークの菌類アトラスに提出された観測から構築され、その分類学的精度の高いクラスラベル、少数のエラー、高度に不均衡な長い尾を持つクラス分布、豊富な観察メタデータ、そして明確に定義されたクラス階層に特有である。
df20はimagenetと重複しないため、imagenetの公開チェックポイントから微調整されたモデルの偏りのない比較が可能になる。
提案した評価プロトコルはメタデータを使って分類を改善することができる。
正確な地理的位置、生息地、および基板は、分類器の校正テストを促進し、最終的にデバイス設定が分類性能に与える影響を研究することができる。
畳み込みニューラルネットワーク(CNN)と最近のビジョントランスフォーマー(ViT)を用いた実験は、DF20が難しい課題であることを示している。
興味深いことに、ViTは81.25%の精度でCNNベースラインよりも優れており、CNNエラーを13%削減している。
決定プロセスにメタデータを含めるベースライン手順は、分類精度を3.5ポイント以上向上させ、エラー率を20%削減する。
すべてのメソッドと実験のソースコードは、https://sites.google.com/view/danish-fungi-datasetで入手できる。
関連論文リスト
- Graph Mining under Data scarcity [6.229055041065048]
汎用グラフニューラルネットワーク(GNN)上に適用可能な不確実性推定フレームワークを提案する。
エンド・ツー・エンドの設定で、$n$-way、$k$-shotという古典的なエピソード学習パラダイムの下でこれらのモデルをトレーニングします。
提案手法は,GNNを用いたグラフ上のFew-shotノード分類における不確実性推定器の有効性を示すベースラインよりも優れる。
論文 参考訳(メタデータ) (2024-06-07T10:50:03Z) - Fuzzy Convolution Neural Networks for Tabular Data Classification [0.0]
畳み込みニューラルネットワーク(CNN)は、様々な領域における顕著な性能のために、多くの注目を集めている。
本稿では,表データに適したファジィ畳み込みニューラルネットワーク(FCNN)を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:33:35Z) - A Decade's Battle on Dataset Bias: Are We There Yet? [32.46064586176908]
10年前にTorralbaとEfrosによって提案された"データセット分類"実験を再考する。
驚くべきことに、現在のニューラルネットワークは、画像がどのデータセットから来ているかの分類において、優れた精度を達成することができる。
論文 参考訳(メタデータ) (2024-03-13T15:46:37Z) - Cross-dataset domain adaptation for the classification COVID-19 using
chest computed tomography images [0.6798775532273751]
COVID19-DANetは、機能抽出のためにトレーニング済みのCNNバックボーンに基づいている。
SARS-CoV-2-CTとCOVID19-CTデータセットを使用して、4つのクロスデータセットシナリオでテストされる。
論文 参考訳(メタデータ) (2023-11-14T20:36:34Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Attention Mechanism Meets with Hybrid Dense Network for Hyperspectral
Image Classification [6.946336514955953]
畳み込みニューラルネットワーク(CNN)は、実際より適している。
固定化されたカーネルサイズは、従来のCNNが柔軟でも、特徴学習にも適さないため、分類精度に影響を及ぼす。
提案手法は,3Dと2Dインセプションネットのコアアイデアとアテンション機構を組み合わせることで,ハイブリッドシナリオにおけるHSIC CNNの性能向上を図ることを目的としている。
AfNetは、各ブロックに異なるカーネルを持つ3つのアテンションフューズされた並列ハイブリッドサブネットをベースとして、最終的な地上トラスマップを強化するために高レベルな特徴を繰り返し利用する。
論文 参考訳(メタデータ) (2022-01-04T06:30:24Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
本稿では,CNNの長期分布からネットワーク学習を改善するための2つの効果的な修正を提案する。
まず,ネットワーク分類器の学習と予測を改善するために,CAMC (Class Activation Map) モジュールを提案する。
第2に,長期化問題における表現学習における正規化分類器の利用について検討する。
論文 参考訳(メタデータ) (2021-08-29T05:45:03Z) - High performing ensemble of convolutional neural networks for insect
pest image detection [124.23179560022761]
害虫の寄生は作物の被害の主な原因であり、世界中の収入を失った。
我々は異なるトポロジに基づいてCNNのアンサンブルを生成する。
ディープネットワーク最適化のための2つの新しいAdamアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-28T00:49:11Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Tent: Fully Test-time Adaptation by Entropy Minimization [77.85911673550851]
モデルは、テスト中に新しいデータや異なるデータに一般化するように適応する必要があります。
この完全なテスト時間適応の設定では、モデルはテストデータとそれ自身のパラメータしか持たない。
実験エントロピー最小化(tent): 予測のエントロピーによって測定された信頼度に対するモデルを最適化する。
論文 参考訳(メタデータ) (2020-06-18T17:55:28Z) - Generalized Focal Loss: Learning Qualified and Distributed Bounding
Boxes for Dense Object Detection [85.53263670166304]
一段検出器は基本的に、物体検出を密度の高い分類と位置化として定式化する。
1段検出器の最近の傾向は、局所化の質を推定するために個別の予測分岐を導入することである。
本稿では, 上記の3つの基本要素, 品質推定, 分類, ローカライゼーションについて述べる。
論文 参考訳(メタデータ) (2020-06-08T07:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。