論文の概要: Graph Mining under Data scarcity
- arxiv url: http://arxiv.org/abs/2406.04825v2
- Date: Tue, 11 Jun 2024 13:33:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 10:17:16.271684
- Title: Graph Mining under Data scarcity
- Title(参考訳): データ不足下におけるグラフマイニング
- Authors: Appan Rakaraddi, Lam Siew-Kei, Mahardhika Pratama, Marcus de Carvalho,
- Abstract要約: 汎用グラフニューラルネットワーク(GNN)上に適用可能な不確実性推定フレームワークを提案する。
エンド・ツー・エンドの設定で、$n$-way、$k$-shotという古典的なエピソード学習パラダイムの下でこれらのモデルをトレーニングします。
提案手法は,GNNを用いたグラフ上のFew-shotノード分類における不確実性推定器の有効性を示すベースラインよりも優れる。
- 参考スコア(独自算出の注目度): 6.229055041065048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multitude of deep learning models have been proposed for node classification in graphs. However, they tend to perform poorly under labeled-data scarcity. Although Few-shot learning for graphs has been introduced to overcome this problem, the existing models are not easily adaptable for generic graph learning frameworks like Graph Neural Networks (GNNs). Our work proposes an Uncertainty Estimator framework that can be applied on top of any generic GNN backbone network (which are typically designed for supervised/semi-supervised node classification) to improve the node classification performance. A neural network is used to model the Uncertainty Estimator as a probability distribution rather than probabilistic discrete scalar values. We train these models under the classic episodic learning paradigm in the $n$-way, $k$-shot fashion, in an end-to-end setting. Our work demonstrates that implementation of the uncertainty estimator on a GNN backbone network improves the classification accuracy under Few-shot setting without any meta-learning specific architecture. We conduct experiments on multiple datasets under different Few-shot settings and different GNN-based backbone networks. Our method outperforms the baselines, which demonstrates the efficacy of the Uncertainty Estimator for Few-shot node classification on graphs with a GNN.
- Abstract(参考訳): グラフにおけるノード分類のための深層学習モデルのマルチチュードが提案されている。
しかし、ラベル付きデータの不足下では性能が劣る傾向にある。
この問題を解決するためにグラフのショットラーニングが導入されたが、既存のモデルはグラフニューラルネットワーク(GNN)のような一般的なグラフラーニングフレームワークに容易に適応できない。
本研究は,ノード分類性能を向上させるため,一般的なGNNバックボーンネットワーク(一般的には教師付きノード分類用に設計されている)上に適用可能な不確実性推定フレームワークを提案する。
ニューラルネットワークは確率的離散スカラー値ではなく確率分布として不確実性推定器をモデル化するために用いられる。
エンド・ツー・エンドの設定で、$n$-way、$k$-shotという古典的なエピソード学習パラダイムの下でこれらのモデルをトレーニングします。
本研究は,GNNバックボーンネットワークにおける不確実性推定器の実装により,メタ学習固有のアーキテクチャを使わずにFew-shot設定下での分類精度が向上することを示す。
我々は、異なるFewショット設定と異なるGNNベースのバックボーンネットワークの下で、複数のデータセットで実験を行う。
提案手法は,GNNを用いたグラフ上のFew-shotノード分類における不確実性推定器の有効性を示す。
関連論文リスト
- GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
グラフニューラルネットワーク(GNN)は,ノード分類などのグラフベースの学習タスクの新興技術である。
本研究では,ノードラベルの不均衡に対するGNNの脆弱性を明らかにする。
本稿では,2つのモジュールからなるカリキュラム学習(GNN-CL)を備えたグラフニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-05T10:46:11Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
本稿では,グラフ埋め込みを学習可能なGNNと互換性のあるモデリングフレームワークであるGNNRankを紹介する。
既存の手法と比較して,我々の手法が競争力があり,しばしば優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-02-01T04:19:50Z) - Distance-wise Prototypical Graph Neural Network in Node Imbalance
Classification [9.755229198654922]
本研究では,不均衡なグラフデータに対して,距離ワイドなプロトタイプグラフニューラルネットワーク(DPGNN)を提案する。
提案した DPGNN は, ほぼ常に他のベースラインよりも優れており, 不均衡ノード分類におけるその有効性を示している。
論文 参考訳(メタデータ) (2021-10-22T19:43:15Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) は、バイアス付きトレーニングデータとグラフの真の推論分布の分布差を考慮に入れた設計である。
SR-GNNが他のGNNベースラインを精度良く上回り、バイアス付きトレーニングデータから生じる負の効果の少なくとも40%を排除していることを示す。
論文 参考訳(メタデータ) (2021-08-02T18:00:38Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Adversarial Attack on Hierarchical Graph Pooling Neural Networks [14.72310134429243]
グラフ分類タスクにおけるグラフニューラルネットワーク(GNN)の堅牢性について検討する。
本稿では,グラフ分類タスクに対する逆攻撃フレームワークを提案する。
我々の知る限りでは、これは階層的なGNNベースのグラフ分類モデルに対する敵攻撃に関する最初の研究である。
論文 参考訳(メタデータ) (2020-05-23T16:19:47Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。