論文の概要: Transpose Attack: Stealing Datasets with Bidirectional Training
- arxiv url: http://arxiv.org/abs/2311.07389v2
- Date: Fri, 17 May 2024 17:31:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 20:23:25.412367
- Title: Transpose Attack: Stealing Datasets with Bidirectional Training
- Title(参考訳): トランスポーズ攻撃:双方向トレーニングによるデータセットのステアリング
- Authors: Guy Amit, Mosh Levy, Yisroel Mirsky,
- Abstract要約: 敵は正統なモデルの下で保護された学習環境からデータセットを抽出できることを示す。
本稿では,感染モデルを検出するための新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 4.166238443183223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are normally executed in the forward direction. However, in this work, we identify a vulnerability that enables models to be trained in both directions and on different tasks. Adversaries can exploit this capability to hide rogue models within seemingly legitimate models. In addition, in this work we show that neural networks can be taught to systematically memorize and retrieve specific samples from datasets. Together, these findings expose a novel method in which adversaries can exfiltrate datasets from protected learning environments under the guise of legitimate models. We focus on the data exfiltration attack and show that modern architectures can be used to secretly exfiltrate tens of thousands of samples with high fidelity, high enough to compromise data privacy and even train new models. Moreover, to mitigate this threat we propose a novel approach for detecting infected models.
- Abstract(参考訳): ディープニューラルネットワークは通常、前方で実行される。
しかし、本研究では、モデルが異なるタスクの方向と方向の両方でトレーニングできる脆弱性を特定します。
敵は、この能力を利用して、一見正当なモデルの中にローグモデルを隠すことができる。
さらに、本研究では、ニューラルネットワークがデータセットから特定のサンプルを体系的に記憶し、検索するように教えられることを示す。
これらの知見は,保護された学習環境から正当性のあるモデルの下でデータセットを抽出する新たな手法を明らかにするものである。
データ流出攻撃に焦点をあてて、現代のアーキテクチャは秘密裏に数万のサンプルを秘密裏に流出させ、データのプライバシーを侵害したり、新しいモデルを訓練したりできることを示す。
さらに、この脅威を軽減するために、感染モデルを検出するための新しいアプローチを提案する。
関連論文リスト
- Memory Backdoor Attacks on Neural Networks [3.2720947374803777]
本稿では,特定のトレーニングサンプルに対してモデルを秘密裏に訓練し,後に選択的に出力するメモリバックドア攻撃を提案する。
画像分類器、セグメンテーションモデル、および大規模言語モデル(LLM)に対する攻撃を実証する。
論文 参考訳(メタデータ) (2024-11-21T16:09:16Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
バックドア検出のためのオープンセット分類タスクにモデルペアを用いることを提案する。
このスコアは、異なるアーキテクチャのモデルがあるにもかかわらず、バックドアの存在を示す指標であることを示している。
この技術は、オープンセット分類タスク用に設計されたモデル上のバックドアの検出を可能にするが、文献ではほとんど研究されていない。
論文 参考訳(メタデータ) (2024-02-28T21:29:16Z) - TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
本稿では,ネットワークアクティベーションに適用した2つのテンソル分解法によるバックドア検出手法を提案する。
これは、複数のモデルを同時に分析する機能など、既存の検出方法と比較して、多くの利点がある。
その結果,現在の最先端手法よりも,バックドアネットワークを高精度かつ効率的に検出できることがわかった。
論文 参考訳(メタデータ) (2024-01-06T03:08:28Z) - Leveraging Diffusion-Based Image Variations for Robust Training on
Poisoned Data [26.551317580666353]
バックドア攻撃は、ニューラルネットワークをトレーニングする上で深刻なセキュリティ上の脅威となる。
本稿では,近年の拡散モデルのパワーを生かして,潜在的に有毒なデータセットのモデルトレーニングを可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-10T07:25:06Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
機械学習モデルへのアクセスを考えると、敵はモデルのトレーニングデータを再構築できるだろうか?
本研究は、この疑問を、学習データポイントの全てを知っている強力な情報提供者のレンズから研究する。
この厳密な脅威モデルにおいて、残りのデータポイントを再構築することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-13T09:19:25Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。