論文の概要: ChronoR: Rotation Based Temporal Knowledge Graph Embedding
- arxiv url: http://arxiv.org/abs/2103.10379v1
- Date: Thu, 18 Mar 2021 17:08:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 13:50:52.109618
- Title: ChronoR: Rotation Based Temporal Knowledge Graph Embedding
- Title(参考訳): ChronoR: 回転に基づく時間的知識グラフ埋め込み
- Authors: Ali Sadeghian, Mohammadreza Armandpour, Anthony Colas, Daisy Zhe Wang
- Abstract要約: 時間的知識グラフに対する推論の難解な問題について検討する。
実体,関係,時間を表す表現を学習するための新しいモデルであるChronoR(ChronoR)を提案する。
chronorは、時間的知識グラフリンク予測のためのベンチマークデータセットの最先端メソッドの多くを上回ることができる。
- 参考スコア(独自算出の注目度): 8.039202293739185
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the importance and abundance of temporal knowledge graphs, most of
the current research has been focused on reasoning on static graphs. In this
paper, we study the challenging problem of inference over temporal knowledge
graphs. In particular, the task of temporal link prediction. In general, this
is a difficult task due to data non-stationarity, data heterogeneity, and its
complex temporal dependencies. We propose Chronological Rotation embedding
(ChronoR), a novel model for learning representations for entities, relations,
and time. Learning dense representations is frequently used as an efficient and
versatile method to perform reasoning on knowledge graphs. The proposed model
learns a k-dimensional rotation transformation parametrized by relation and
time, such that after each fact's head entity is transformed using the
rotation, it falls near its corresponding tail entity. By using high
dimensional rotation as its transformation operator, ChronoR captures rich
interaction between the temporal and multi-relational characteristics of a
Temporal Knowledge Graph. Experimentally, we show that ChronoR is able to
outperform many of the state-of-the-art methods on the benchmark datasets for
temporal knowledge graph link prediction.
- Abstract(参考訳): 時間的知識グラフの重要性と豊富さにもかかわらず、現在の研究のほとんどは静的グラフの推論に焦点が当てられている。
本稿では,時間的知識グラフに対する推論の問題について検討する。
特に、時間的リンク予測のタスク。
一般に、これはデータ非定常性、データ不均一性、および複雑な時間的依存関係のために難しいタスクである。
本稿では,エンティティ,関係,時刻の表現を学習するための新しいモデルであるChronoRを提案する。
密表現の学習は知識グラフの推論を行うための効率的で汎用的な方法としてよく用いられる。
提案モデルでは, 関係と時間によってパラメータ化されたk次元回転変換を学習し, 各事象の頭部実体が回転を用いて変換された後, 対応する尾実体の近傍に落下する。
高次元回転を変換演算子として使用することにより、クロノRは時間的知識グラフの時間的特性とマルチリレーショナル特性の間のリッチな相互作用をキャプチャする。
実験により,時系列知識グラフリンク予測のためのベンチマークデータセットにおいて,chronorは最先端手法の多くを上回ることができることを示した。
関連論文リスト
- Temporal Knowledge Graph Completion with Time-sensitive Relations in
Hypercomplex Space [20.235189945656927]
時間的知識グラフ補完(TKGC)は、特定の時間における時間的知識グラフ内の行方不明事実を埋めることを目的としている。
本稿では,超複素空間内のTKGCに対して,より表現力の高い四元数表現を導入することで,従来のアプローチを超えて前進する。
論文 参考訳(メタデータ) (2024-03-02T16:50:48Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
TNTComplExのような単純な手法は、最先端の手法よりもはるかに正確な結果が得られることを示す。
また,2つの時間的リンク予測モデルに対する幅広い時間的平滑化正規化の影響についても検討した。
論文 参考訳(メタデータ) (2023-09-16T16:52:49Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
時間グラフ学習は、動的情報を用いたグラフベースのタスクのための高品質な表現を生成することを目的としている。
本稿では,時間的および構造的情報の両方を抽出する時間的グラフ学習のためのS2Tという自己教師型手法を提案する。
S2Tは、いくつかのデータセットにおける最先端の競合と比較して、少なくとも10.13%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-02-15T06:36:04Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations [1.8262547855491458]
低ランクテンソル分解モデル LowFER のパラメータ効率および時間認識拡張系である Time-LowFER を導入する。
時間を表現するための現在のアプローチのいくつかの制限に留意し、時間特徴に対するサイクル対応の時間符号化方式を提案する。
我々は,時間に敏感なデータ処理に着目した統合時間知識グラフ埋め込みフレームワークに本手法を実装した。
論文 参考訳(メタデータ) (2022-04-10T22:24:11Z) - RotateQVS: Representing Temporal Information as Rotations in Quaternion
Vector Space for Temporal Knowledge Graph Completion [21.587197001067043]
本研究では,時間的実体を四元ベクトル空間(RotateQVS)の回転として表現し,ハミルトン四元ベクトル空間における複素ベクトルとしての関係性を示す新しい時間的モデリング手法を提案する。
提案手法は,4つの時間的知識グラフベンチマーク上でリンク予測タスクの性能を向上させることができる。
論文 参考訳(メタデータ) (2022-03-15T15:27:23Z) - Temporal Contrastive Graph Learning for Video Action Recognition and
Retrieval [83.56444443849679]
本研究では,動画内の時間依存性を利用して,TCGL (temporal Contrastive Graph Learning) という新たな自己監督手法を提案する。
TCGLは、スニペット間およびスニペット内時間依存性を時間表現学習のための自己監督信号として共同で評価するハイブリッドグラフコントラスト学習戦略をルーツとしています。
実験結果は、大規模アクション認識およびビデオ検索ベンチマークにおける最先端の方法よりも、TCGLの優位性を示しています。
論文 参考訳(メタデータ) (2021-01-04T08:11:39Z) - Time-aware Graph Embedding: A temporal smoothness and task-oriented
approach [9.669206664225234]
本稿では,時間的滑らかさを取り入れたロバストな時間認識グラフ埋め込み(RTGE)手法を提案する。
まず、RTGEは時間認識グラフ埋め込みの学習過程における時間的滑らかさの尺度を統合する。
第2に、RTGEは時間的情報に関連する一般的なタスク指向のネガティブサンプリング戦略を提供する。
論文 参考訳(メタデータ) (2020-07-22T02:20:25Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。