論文の概要: Cellcounter: a deep learning framework for high-fidelity spatial
localization of neurons
- arxiv url: http://arxiv.org/abs/2103.10462v1
- Date: Thu, 18 Mar 2021 18:19:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 14:25:37.599557
- Title: Cellcounter: a deep learning framework for high-fidelity spatial
localization of neurons
- Title(参考訳): cellcounter:神経細胞の高忠実度空間局在のためのディープラーニングフレームワーク
- Authors: Tamal Batabyal, Aijaz Ahmad Naik, Daniel Weller, Jaideep Kapur
- Abstract要約: 本研究では,不完全にアノテートされたニューロンを含む画像から学習する深層学習モデルであるcellcounterを提案する。
我々は、いくつかのプロトコルで偽陽性検出を大幅に削減しながら、ニューロンの正確な局在化における芸術の状態にその有効性を示す。
- 参考スコア(独自算出の注目度): 2.2079886535603084
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many neuroscientific applications require robust and accurate localization of
neurons. It is still an unsolved problem because of the enormous variation in
intensity, texture, spatial overlap, morphology and background artifacts. In
addition, curation of a large dataset containing complete manual annotation of
neurons from high-resolution images to train a classifier requires significant
time and effort. We present Cellcounter, a deep learning-based model trained on
images containing incompletely-annotated neurons with highly-varied morphology
and control images containing artifacts and background structures. Leveraging
the striking self-learning ability, Cellcounter gradually labels neurons,
obviating the need for time-intensive complete annotation. Cellcounter shows
its efficacy over the state of the arts in the accurate localization of neurons
while significantly reducing false-positive detection in several protocols.
- Abstract(参考訳): 多くの神経科学応用は、ニューロンの堅牢で正確な局在を必要とする。
強度、テクスチャ、空間的重なり合い、形態学、背景アーティファクトの膨大な変化のため、まだ未解決の問題である。
さらに、高解像度画像からのニューロンの完全な手動アノテーションを含む大規模なデータセットのキュレーションには、かなりの時間と労力が必要となる。
我々は,非完全注釈のニューロンを含む画像と,人工物や背景構造を含む制御画像に基づいて学習した深層学習モデルであるCellcounterを提案する。
驚くべき自己学習能力を活用することで、cellcounterは徐々にニューロンをラベル付けし、時間集約的な完全なアノテーションの必要性を回避している。
cellcounterは、神経細胞の正確な局在における芸術的状態に対する効果を示し、いくつかのプロトコルにおける偽陽性検出を著しく削減している。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
本稿では, 深層学習に基づく手法を提案し, 自動掃除とロバスト分離フィルタの必要性に対処する。
本手法は, ソース分離した高密度表面筋電図記録に基づいて, 人工的に劣化したラベルセットを用いて検証する。
このアプローチにより、ニューラルネットワークは、信号のラベル付けの不完全な方法を使用して、神経生理学的時系列を正確に復号することができる。
論文 参考訳(メタデータ) (2021-10-13T21:51:56Z) - Rapid detection and recognition of whole brain activity in a freely
behaving Caenorhabditis elegans [18.788855494800238]
本稿では,脳神経節ニューロンの長期的,迅速な認識のためのカスケードソリューションを提案する。
少数のトレーニングサンプルの制約の下で、ボトムアップアプローチでは、各ボリューム – 1024倍1024倍18ドル – を1秒未満で処理することができます。
我々の研究は、動物行動に基づく脳の活動全体をデコードするための、迅速かつ完全に自動化されたアルゴリズムに向けた重要な発展を示している。
論文 参考訳(メタデータ) (2021-09-22T01:33:54Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Voxel-wise Cross-Volume Representation Learning for 3D Neuron
Reconstruction [27.836007480393953]
本稿では,エンコーダとデコーダのセグメンテーションモデルに基づいて,新しいボクセルレベルのクロスボリューム表現学習パラダイムを提案する。
我々の手法は推論中に余分なコストを伴わない。
提案手法は,BigNeuronプロジェクトから得られた42個の3次元ニューロン画像に基づいて,元のセグメンテーションモデルの学習能力を向上させる。
論文 参考訳(メタデータ) (2021-08-14T12:17:45Z) - Convolutional Neural Networks for cytoarchitectonic brain mapping at
large scale [0.33727511459109777]
今回我々は,ヒト後脳の多数の細胞体染色組織における細胞構造学的領域をマッピングするための新しいワークフローを提案する。
これはDeep Convolutional Neural Network (CNN)に基づいており、アノテーション付きの一対のセクションイメージに基づいてトレーニングされており、その間に多数の注釈のないセクションがある。
新しいワークフローは、セクションの3D再構成を必要とせず、組織学的アーティファクトに対して堅牢である。
論文 参考訳(メタデータ) (2020-11-25T16:25:13Z) - Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical
Image Segmentation [30.644905857223474]
本稿では,医療画像セグメンテーションのためのラベル付きデータと大量のラベル付き画像を用いて,ニューラルネットワークを訓練するための半教師付きアプローチを提案する。
未ラベル画像に対する新たな擬似ラベル(いわゆる自己ループ不確実性)を基盤として、トレーニングセットを増強し、セグメンテーション精度を高める。
論文 参考訳(メタデータ) (2020-07-20T02:52:07Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。