論文の概要: Characterizing Learning in Spiking Neural Networks with Astrocyte-Like Units
- arxiv url: http://arxiv.org/abs/2503.06798v1
- Date: Sun, 09 Mar 2025 22:36:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:29.918604
- Title: Characterizing Learning in Spiking Neural Networks with Astrocyte-Like Units
- Title(参考訳): アストロサイト様ユニットを用いたスパイキングニューラルネットワークの学習特性
- Authors: Christopher S. Yang, Sylvester J. Gates III, Dulara De Zoysa, Jaehoon Choe, Wolfgang Losert, Corey B. Hart,
- Abstract要約: ニューラルネットワークにアストロサイト様ユニットを加えたスパイクニューラルネットワークモデルを導入する。
神経細胞とアストロサイトの組み合わせは、神経とアストロサイトのみのネットワークとは対照的に、学習を促進する上で重要である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Traditional artificial neural networks take inspiration from biological networks, using layers of neuron-like nodes to pass information for processing. More realistic models include spiking in the neural network, capturing the electrical characteristics more closely. However, a large proportion of brain cells are of the glial cell type, in particular astrocytes which have been suggested to play a role in performing computations. Here, we introduce a modified spiking neural network model with added astrocyte-like units in a neural network and asses their impact on learning. We implement the network as a liquid state machine and task the network with performing a chaotic time-series prediction task. We varied the number and ratio of neuron-like and astrocyte-like units in the network to examine the latter units effect on learning. We show that the combination of neurons and astrocytes together, as opposed to neural- and astrocyte-only networks, are critical for driving learning. Interestingly, we found that the highest learning rate was achieved when the ratio between astrocyte-like and neuron-like units was roughly 2 to 1, mirroring some estimates of the ratio of biological astrocytes to neurons. Our results demonstrate that incorporating astrocyte-like units which represent information across longer timescales can alter the learning rates of neural networks, and the proportion of astrocytes to neurons should be tuned appropriately to a given task.
- Abstract(参考訳): 従来の人工ニューラルネットワークは生物学的ネットワークからインスピレーションを受け、ニューロンのようなノードの層を使って処理に情報を渡す。
より現実的なモデルには、ニューラルネットワークでスパイクし、電気的特性をより密に捉えている。
しかし、脳細胞の大部分はグリア細胞型であり、特にアストロサイトは計算の実行に重要な役割を果たしていると示唆されている。
本稿では、ニューラルネットワークにアストロサイトのようなユニットを加えたスパイクニューラルネットワークモデルを導入し、学習への影響を評価する。
我々は,このネットワークを液体状態マシンとして実装し,カオス的な時系列予測タスクを行う。
ネットワーク内のニューロン様ユニットとアストロサイト様ユニットの数と比率を変動させ,後者のユニットが学習に与える影響を検討した。
神経細胞とアストロサイトの組み合わせは、神経とアストロサイトのみのネットワークとは対照的に、学習を促進する上で重要である。
興味深いことに、アストロサイト様とニューロン様の単位の比率が約2から1のとき、最も高い学習率が得られた。
以上の結果から,より長い時間スケールで情報を表現するアストロサイト様ユニットを組み込むことで,ニューラルネットワークの学習速度が変化し,神経細胞へのアストロサイトの割合が与えられたタスクに適切に調整されることが示唆された。
関連論文リスト
- Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
ニューラルネットワークの単一ニューロンはしばしば、個々の直感的に意味のある特徴を表すものとして解釈される。
多くのニューロンは$textitmixed selectivity$、すなわち複数の無関係な特徴を示す。
本稿では、視覚的解釈可能性の定量化と、ネットワークアクティベーション空間における意味のある方向を見つけるためのアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-17T17:41:28Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Functional Connectome: Approximating Brain Networks with Artificial
Neural Networks [1.952097552284465]
訓練されたディープニューラルネットワークは、合成生物学的ネットワークによって実行される計算を高精度に捉えることができることを示す。
訓練されたディープニューラルネットワークは、新しい環境でゼロショットの一般化を実行可能であることを示す。
本研究は, システム神経科学における新規かつ有望な方向性を明らかにする。
論文 参考訳(メタデータ) (2022-11-23T13:12:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Generalizable Machine Learning in Neuroscience using Graph Neural
Networks [0.0]
ニューラルネットワークは、ニューロンレベルの動的予測と行動状態の分類の両方において、非常によく機能することを示す。
実験の結果, グラフニューラルネットワークは構造モデルよりも優れ, 目に見えない生物の一般化に優れていた。
論文 参考訳(メタデータ) (2020-10-16T18:09:46Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。